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In conventional structure re®nement, the discrepancy between the calculated

magnitudes and those observed in X-ray experiments is attributed to errors

inherent in preliminary assigned values of the model parameters. However, the

chosen set of model parameters may not be adequate to describe the structure

factors precisely. For example, if some atoms are not included in the current

model, then the structure factors calculated from such a partial model contain

`irremovable errors'. These errors cannot be eliminated by any choice of the

parameters of the partial structure. Probabilistic modelling suggests a way to

take irremovable errors into account. Every trial set of values of the model

parameters is now associated with the joint probability distribution of the

calculated magnitudes, rather than with a particular set of magnitudes. The new

goal of the re®nement is formulated as the search for the distribution that is the

most consistent with the observed data. The statistical likelihood is a possible

measure of the consistency. The suggested quadratic approximation of the

likelihood function allows the likelihood-based re®nement to be considered as a

kind of least-squares re®nement that uses appropriate weights and modi®ed

targets for the calculated magnitudes. This in turn enables the analysis of

tendencies of the likelihood-based re®nement in comparison with the classical

least-squares re®nement.

1. Introduction

Of recent attractive ideas in crystallographic re®nement, one

is to enhance its power by maximization of a likelihood

function instead of the conventional minimization of the least-

squares (LSQ) criterion. A special type of this likelihood

function, which was used primarily for the evaluation of model

quality (Lunin & Urzhumtsev, 1984; Read, 1986, 1990; Lunin

& Skovoroda, 1995; Urzhumtsev et al., 1996), was suggested

recently as a new goal function for the re®nement of atomic

models (Pannu & Read, 1996; Bricogne & Irwin, 1996;

Murshudov et al., 1997; Adams et al., 1997; Pannu et al., 1998).

While the practical use of this approach has demonstrated

encouraging progress, the theoretical reasons to change the

re®nement procedure are still not clear. The likelihood func-

tion always has some probabilistic model behind it and the

clear understanding of that model and its links to the like-

lihood-function parameters is necessary to manage the

re®nement process, which is different from the classical LSQ

re®nement, as illustrated in x2 below. It is important to stress

that the likelihood-based strategy (ML re®nement in what

follows) changes the course of the work and involves new

tendencies in the re®nement. To analyse these tendencies, a

quadratic approximation of the ML residual is derived and

studied in x3. Simple test calculations (x4) illustrate this study.

Some technical details are discussed in Appendices A and B.

In the process of the conventional LSQ re®nement, the

magnitudes fFcalc
s gs2S calculated from the current values of

atomic coordinates and from other model parameters are

®tted to the observed structure-factor magnitudes fFobs
s gs2S,

minimizing the residual

QLSQ �P
s2S

ws�kFcalc
s ÿ Fobs

s �2 �1�

or

Q
�2�
LSQ �P

s2S
ws��kFcalc

s �2 ÿ �Fobs
s �2�2: �2�

The weights fwsgs2S may re¯ect the accuracy of the observed

magnitudes or other effects. When re®ning structures of small

molecules, the weights ws � �ÿ2
s are usually used, where �s

re¯ects the accuracy of the measured Fobs
s . In protein crys-

tallography, the weights are sometimes ignored and the

minimization of (1) or (2) is performed with unit weights.

Usually, the scale factor k is calculated for the given values of

fFcalc
s gs2S and fFobs

s gs2S to minimize the chosen criterion.

A likelihood function appears when some probabilistic

models are introduced in order to describe structural features
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or experimental environments that affect the structure factors

but are not re¯ected explicitly in the current model. Such

features will be referred to as `irremovable model errors'. For

example, at early stages of the structure solution, approximate

atomic coordinates may be known for a part of the model only.

In this case, the calculated structure-factor magnitudes do not

coincide with the observed ones even when the true coordi-

nates for the partial-model atoms are found. An attempt to

force the calculated magnitudes to be as close as possible to

the observed ones may move the atoms of such a partial model

away from their true positions in the course of re®nement (see

x4 for examples). A possible way to overcome the obstacle

may be to use a probabilistic modelling and to take the missed

atoms into account indirectly, for example:

(i) estimate for every trial partial model how large would be

the probability to reproduce the observed magnitude values if

the model were to be completed randomly by the necessary

amount of missed atoms and the structure factors were to be

calculated from such a combined model;

(ii) among all possible partial models choose the model that

maximizes this probability.

The probability mentioned above is the likelihood value and

the suggested approach is the maximal-likelihood principle for

the choice of parameters of a probability distribution (in the

considered case these parameters are the atomic coordinates

of the partial model). Such an approach occupies an inter-

mediate position between the full ignorance of the missed part

of the structure and the extension of the set of model par-

ameters by adding new atoms.

In the procedure, usually referred to as ML re®nement, the

residual (1) is replaced by the negative logarithm of the

likelihood. The model-dependent part of this new residual

may be represented (see Appendix A for details) as

QML �
P
s2S
	�Fcalc

s ;Fobs
s ; �s; �s� ) min; �3�

with

	 �

	a �
�2
s �Fcalc

s �2
"s�s

ÿ ln I0

2�sF
calc
s Fobs

s

"s�s

� �� �
for acentric reflections;

	c �
�2
s �Fcalc

s �2
2"s�s

ÿ ln cosh
�sF

calc
s Fobs

s

"s�s

� �� �
for centric reflections:

8>>>>>>>>>><
>>>>>>>>>>:

�4�

Here the parameter "s depends only on the re¯ection indices

and on the particular space group ÿ � f�R�; t��gn��1 and may

be calculated as the number of reciprocal-space symmetries

RT
� that when applied to the vector s leave it invariable, i.e.

RT
� s � s. The notations I0 (and I1 below) and cosh (and tanh

below) represent the modi®ed Bessel functions and the

hyperbolic cosine and tangent, respectively.

The parameters �s and �s play the key role in the de®nition

of new targets and in¯uence signi®cantly the results of the

re®nement (Afonine et al., 2001, 2002). These parameters and

their values are linked to the probabilistic model used to

describe irremovable errors (Lunin & Urzhumtsev, 1984;

Read, 1986; Lunin & Skovoroda, 1995; Pannu & Read, 1996).

Usually, the parameters �s and �s may be considered as

constant inside thin spherical shells in reciprocal space. To

some extent, the values f�sg re¯ect the scale of irremovable

coordinate errors in the model, e.g. they may be de®ned by the

mean difference between the coordinates of atoms of the

studied object and those of the search model used for rigid-

body re®nement (see x2.2 below). The values f�gs re¯ect both

the irremovable coordinate errors in the model and the

amount of scattering density that is not included in the

calculation of fFcalc
s gs2S (undetermined part of the structure,

bulk solvent etc.). Additionally, �s and �s contain information

on the scale factor, which must be applied to the calculated

magnitudes to place them on the same scale as the observed

values.

There are two main approaches to estimate these par-

ameters. If there exists some probabilistic hypothesis

concerning the irremovable errors in the atomic model, then

these parameters may be sometimes calculated explicitly [see

formulae (17) and (19) below as examples; more examples are

given by Urzhumtsev et al. (1996)]. Another way is to obtain

likelihood-based estimates of these parameters supposing a

general form of the distribution and comparing the observed

structure-factor magnitudes with those corresponding to the

starting atomic model (Lunin & Urzhumtsev, 1984; Read,

1986). Test set re¯ections only must be used in this case to

obtain reliable estimates (Lunin & Skovoroda, 1995; BruÈ nger,

1997; Skovoroda & Lunin, 2000). In what follows, we consider

�s and �s to be known parameters.

By its construction, the likelihood function resulting in the

target (3)±(4) is the joint probability distribution of magni-

tudes of independent complex variables (structure factors)

when each of them is distributed according to the two-

dimensional Gaussian distribution and has uncorrelated real

and imaginary parts (Appendix A). Such likelihood functions

arise frequently when the probabilistic model considered for

irremovable model errors results in a Gaussian distribution for

the particular structure factor. To emphasize this common

nature of the function (4), we use the most general form of

notation (� and �) for the two parameters de®ning Gaussian

distribution (Lunin & Urzhumtsev, 1984). Other notations

may be used for these parameters or for their combinations,

re¯ecting the speci®city of a particular probability model

(Luzzati, 1952; Sim, 1959; Srinivasan & Parthasarathy, 1976;

Read, 1986). It must be noted too that (3)±(4) is not the only

possible type of likelihood-based target and other more

complicated likelihood functions may appear.

The rest of the paper is devoted to a detailed analysis of

(3)±(4) and corresponding consequences. Brie¯y, when being

considered as a function of Fcalc
s , any member 	 in (3) may

have quite different behaviour depending on the value of the

parameter

p � Fobs
s

�"s�s�1=2
�5�
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(Fig. 1). If Fobs
s > �"s�s�1=2 (i.e. p> 1), the function 	 ®rst

decreases from zero to some negative value and then increases

monotonically so that its minimum is attained for some posi-

tive value F�s , which is different from Fobs
s as a rule. If the

re¯ection is relatively weak and Fobs
s � �"s�s�1=2 (i.e. p< 1),

then the function 	 grows monotonically with Fcalc
s so that its

minimum is equal to zero and is attained for Fcalc
s � 0. In this

case, the likelihood-based target ®ts the calculated magnitude

to the zero value (F�s � 0) regardless of the particular value of

Fobs
s .

In the vicinity of the point of its minimum, any member in

(3) may be approximated by a quadratic function (Lunin &

Urzhumtsev, 1999; Afonine et al., 2001, 2002), leading to

eQML �
P
s2S

w�
s �Fcalc

s ÿ F�s �2: �6�

This new residual has the same form as the classical LSQ

residual but the target value for Fcalc
s is now the modi®ed value

F�s instead of the observed magnitude, and the weight w�
s is

de®ned from the curvature of 	 at the point of its minimum.

The weights w�
s and the modi®ed target values F�s in (6) may

be represented (see x3) as

F�s �
�"s�s�1=2

�s
�

Fobs
s

�"s�s�1=2

� �
; w�

s � cs
�2
s

"s�s
�

Fobs
s

�"s�s�1=2

� �
; �7�

where ��p� and ��p� are some uniquely de®ned functions. The

`attenuating' function ��p� is equal to zero for 0 � p � 1 and

is de®ned for any p> 1 as the unique positive solution of the

equation

� � p
I1�2p��
I0�2p��

for acentric reflections �8�

or

� � p tanh�p�� for centric reflections �9�

[some ways of explicit calculation of ��p� are discussed in

Appendix B]. The plots of this function for the centric and

acentric cases are shown in Fig. 2.

The `weighting' function ��p� is de®ned as

�a�p� �
1 ÿ p2 for 0 � p � 1,

2�1 ÿ p2 � �2�p�� for p> 1;

�
for acentric reflections �10�

and

�c�p� � 1 ÿ p2 � �2�p�; for centric reflections: �11�
The plot of ��p� for the centric and acentric cases is shown

in Fig. 3.

The coef®cient cs is de®ned as

cs �
1 for acentric reflections,
1
2 for centric reflections.

�
�12�

The presentation of the goal function in the form (6) allows

one to perform a sort of likelihood-based re®nement with the

standard LSQ re®nement tools. This extends the possibilities

to test various probabilistic models for irremovable errors and

different sets of parameters of the likelihood function.

The following convention is used below to distinguish real,

complex, scalar and vector variables. The italic style is used for

structure-factor magnitudes (Fobs, Fcalc etc.) and real variables

and parameters, while complex values of structure factors are

shown in bold (Fcalc, Fpart etc.). The bold style is used also for

three-dimensional vectors of atomic coordinates (r, u etc.) or

Miller indexes (s) and six-dimensional vectors of rigid-body

parameters (H). Braces f. . .g are used to denote a set of

Figure 1
The behaviour of the target function 	 in the residual (3)±(4) for
relatively weak (p � 0:7, acentric, left) and relatively strong (p � 2,
acentric, right) observed magnitudes. The modi®ed observed magnitude p
is de®ned as p � Fobs="�. The dependence on the modi®ed calculated
magnitude q � �Fcalc="� is shown.

Figure 2
The `attenuating' function (8)±(9) for centric (�c) and acentric (�a)
re¯ections.

Figure 3
The `weighting' function (10)±(11) for centric (�c) and acentric (�a)
re¯ections.
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values, e.g. fFobs
s g means the set of all observed magnitudes,

frjg means the set of coordinates of all atoms included in

the model etc. Angular brackets h. . .i are used for mean

(expected) values of random variables.

2. Irremovable errors in the modelling and maximal-
likelihood principle

There exist several reasons why the structure-factor magni-

tudes calculated from an atomic model differ from the

observed values. The ®rst of them is the presence of errors in

the current values of variable parameters of the model; the

®nal goal of the re®nement is to remove these errors, i.e. to

®nd the exact values for these parameters. In what follows,

such errors are called removable. Another, quite different,

type of error is that caused by imperfect composition of the

model or imperfect algorithms used to calculate structure-

factor magnitudes starting from the variable parameters. The

simplest example is the presence in the crystal of atoms whose

contribution to the diffraction is not included in the calculated

magnitudes. Another example is the difference between the

true atomic structure and a search model used for the mole-

cular replacement or for the rigid-body re®nement. In the

latter case, structure-factor magnitudes calculated from this

model are different from the experimental values, even when

the optimal model parameters are chosen. Changing the

variable parameters of the model cannot eliminate such

errors; thus we will refer to them as irremovable errors. One

more source of discrepancy between the calculated and

observed magnitudes is experimental errors. They too may be

considered as irremovable errors.

While optimization of parameters is widely discussed in the

literature, the second type of error, namely irremovable errors,

demands special study. To make our analysis more clear, in the

following sections we study independently several idealized

situations where only one source of irremovable errors is

present at a time. More general questions are discussed in x2.4.

An attempt to combine different kinds of information may

present extra dif®culties and additional approximations are

necessary (Pannu & Read, 1996; Read, 2001).

2.1. Free-atom refinement of a partial model

Let us consider a situation where an approximate atomic

model (M atoms) for a part of the structure is available while

the positions of the rest of the atoms (N ÿM atoms) are

unknown. We denote corresponding coordinates frjgMj�1 and

fukgNk�M�1. If the observed magnitudes do not contain errors

and the complex values Fpart
s �frjg� and Flost

s �fujg� represent the

partial structure factors calculated separately for the atoms

included in the current model and for those that are lost,

respectively, then

Fobs
s � Fpart

s �frtrue
j g� � Flost

s futrue
k g� ��� ��; �13�

where rtrue
j and utrue

k are the exact values of the atomic coor-

dinates. As a consequence, in the general case,

Fobs
s 6� Fpart

s �frtrue
j g��� �� �14�

and ®tting Fpart
s to Fobs

s , as suggested by the LSQ criterion (1),

may move coordinates frjgMj�1 away from their exact values.

This shows that the comparison of calculated and observed

magnitudes is justi®ed only when the contribution Flost
s of the

lost atoms to the structure factor is small enough or if Flost
s is

taken somehow into account. Probabilistic modelling allows

one to introduce such a correction.

Let us suppose that the atomic coordinates fukgNk�M�1 for

the lost atoms are chosen randomly (e.g. uniformly in the unit

cell) and the corresponding partial structure factors fFlost
s g are

calculated and added to those for the ®xed partial model. The

combined magnitudes are now de®ned as

Fcomb
s � Fpart

s �frjg� � Flost
s �fukg�

�� ��: �15�
Calculated values fFcomb

s g are different for different choices

of the random coordinates fukgNk�M�1 and in general do not

coincide with the observed values. Nevertheless, the question

can be posed `how large is the probability that the magnitudes

calculated in (15) will occasionally coincide with fFobs
s g' or,

more appropriately, `will be close enough to these values'?

This probability depends on the ®xed partial-model coordi-

nates frjgMj�1. If these coordinates are exact, then there exists, at

least theoretically, a chance that randomly chosen fukgNk�M�1

values will be close to futrue
k gNk�M�1 so that fFcomb

s g values will be

close to the observed magnitudes. On the contrary, if the

coordinates frjgMj�1 are completely incorrect, such a correction

of structure factors by (15) may be impossible. The value L of

this probability may distinguish poor partial models from the

correct one. Going further, the partial model that maximizes

L�frjg� can be searched. The model that maximizes the chance

of correct completion by randomly adding the lost atoms may

be considered as a new goal of the re®nement.

More formally, for every trial partial model frjgMj�1, we

consider the coordinates of the lost atoms as primary random

variables and de®ne new random variables fFcomb
s g via (15).

For these new variables, we consider their joint probability

distribution Pcomb�fFcomb
s g; frjg� and de®ne a measure of the

quality of the partial model as the value of this function

calculated with Fcomb
s � Fobs

s , i.e. as the probability to obtain

the observed magnitudes

L�frjg� � Pcomb�fFobs
s g; frjg�: �16�

In the mathematical statistics, the value L�frjg� is called the

likelihood and the search for the partial model that maximizes

the likelihood is nothing but the widely used maximal-like-

lihood approach to the estimation of parameters frjg of the

probability distribution Pcomb�fFsg; frjg�.
Various probabilistic models for a distribution of the lost

atoms in the unit cell may be considered, and they would lead

to different likelihood functions. The realization of the

proposed approach depends on the possibility to calculate the

value of the likelihood (16) for any trial partial model (see

Appendix A). If the hypothesis on uniform distribution of the

lost atoms in the unit cell is used and the observed data are

reduced to the absolute scale, then the maximization of the
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likelihood (16) may be replaced by the minimization of the

residual (3)±(4) with �s, �s parameters calculated as

�s � 1 and �s �
PN

k�M�1

f 2
k �s�: �17�

Here fk�s� are scattering factors of the lost atoms.

2.2. Rigid-body refinement of a full model

Rigid-body re®nement is an essential part of the molecular

replacement method where an atomic model of a homologous

structure (the search model) properly placed in the unit cell is

used to calculate approximate values of the structure-factor

phases. The search model may be incomplete and imperfect,

i.e. it may differ from the corresponding part of the model of

the macromolecule under study. Likelihood-based residuals

allow one to take this into account and thus extend the

possibilities of the re®nement (Read, 2001). For simplicity, in

this section we consider the case of a complete but imperfect

search model and suppose that the observed magnitudes do

not contain errors [for a more general analysis, see Read

(2001)]. The search model is moved as a rigid body, varying its

rotation and translation parameters H. If the search model is

imperfect, then for any choice of H its atoms cannot ®t

precisely together all the atomic positions of the studied

structure. This means that the calculated magnitudes Fcalc
s �H�

do not coincide with the observed ones, even for the optimal

rotation and translation parameter values.

The coordinate errors remaining in the optimally placed

model are irremovable in the frame of the rigid-body re®ne-

ment, i.e. they cannot be reduced to zero by any choice of the

rigid-body parameters. Nevertheless, these errors may become

removable at the next stage of the structural study when all

atoms are allowed to change their positions independently of

others (possibly being restrained by some conditions).

Similarly to the case studied above, a probabilistic model

can be used to replace unavailable information about differ-

ences in atomic positions in the optimally placed search model

and the structure under study. Let H represent current values

of the rotation and translation parameters and frsearch
j �H�gNj�1

be the atomic coordinates of the search model, rotated and

translated correspondingly. As previously, the question can be

posed as to how large is the probability that the calculated

magnitudes Fcalc
s �frsearch

j �H� ��rjg� are equal to the observed

ones after random independent corrections f�rjgNj�1 have been

introduced into the search model coordinates. Here the

maximal-likelihood choice of the parameters Hopt means the

search for such a model position and orientation that maxi-

mize this probability:

L�H� � Psearch�fFobs
s g;H� ) max; �18�

where Psearch�fFsg;H� represents the joint probability distri-

bution of random variables Fcalc
s �frsearch

j �H� ��rjg� de®ned

through the primary random variables f�rjgNj�1.

Similarly to the previous section, the likelihood function

depends on the probabilistic model of distribution of errors in

the search model. For the case of independent errors posses-

sing an isotropic Gaussian distribution, the maximization of

(18) may be reduced to minimization of the function (3)±(4)

with the parameters �s and �s de®ned as

�s � hcos 2��s;�rj�i � exp�ÿ�3!2s2=4�;

�s � �1 ÿ �2
s �
PN
j�1

f 2
j �s�:

�19�

Here fj�s� are the scattering factors of atoms of the search

model and ! represents the expected mean error in the

position of these atoms.

2.3. Errors in the observed magnitudes

One more possible source of irremovable discrepancies

between the calculated and the observed magnitudes is

experimental errors in the observed magnitudes. In this

situation, the calculated magnitudes can be corrected by some

random values �Fs in order to simulate the experimental

errors:

Fcorr
s � Fcalc

s �frjg� ��Fs: �20�
Similarly to the previous sections, for the given model par-

ameters frjgNj�1, the question can be posed as to how large is the

probability Pcorr�fFcorr
s g� to make the calculated magnitudes

Fcalc
s �frjg� equal to the observed ones by these random

corrections �Fs. The maximal-likelihood choice in this case

means the search for the model parameters that maximize

L�frjg� � Pcorr�fFobs
s g� ) max: �21�

Obviously, there is little sense in such a general formulation

until it is determined which random corrections of magnitudes

may be considered as reasonable or, in other words, until some

precise probabilistic model for the experimental errors has

been introduced. To de®ne these terms, it is necessary to know

something about the accuracy of the data collection, i.e. to

introduce new information into the problem. If it is known

(e.g. from multiple measuring of the same re¯ection or

equivalent re¯ections) that the experimental errors present in

the observed magnitudes may be considered as independent

ones, distributed in accordance with the Gaussian distribution

with mean zero and standard deviations �s, then the likelihood

function (21) may be written as

L�frjg� �
Y
s

1

�2��1=2�s
exp ÿ �Fcalc

s �frjg� ÿ Fobs
s �2

2�2
s

� �
; �22�

so that the maximization in (21) may be replaced by the

minimization

ÿ lnL�frjg� � ÿ
X
s

ln

�
1

�2��1=2�s

�

� 1
2

X
s

1

�2
s

�Fcalc
s �frjg� ÿ Fobs

s �2

) min: �23�
The variable part of (23) is nothing but the conventional target

(1) and therefore the conventional crystallographic re®nement

may also be considered as a ML re®nement. This is not
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surprising because of the profound links between the like-

lihood and least-squares methods in mathematical statistics.

2.4. Statistical refinement

The approach suggested above may be generalized as a

concept of statistical re®nement.

The conventional structure re®nement may be described as

follows. There exists a formula or a computer algorithm that

enables a set of structure-factor magnitude to be calculated

starting from a set of atomic parameters (coordinates,

temperature factors, occupancies etc.). In other words, every

set of model parameters is associated with a set of corre-

sponding calculated magnitudes. If a set of experimentally

obtained magnitudes is available, the goal of the conventional

re®nement is formulated as:

To choose the set of atomic parameters for which the corre-

sponding calculated magnitudes are the most consistent with the

experimental data.

Different measures may be used to evaluate this consistency

numerically, e.g. (1) or (2), and they may lead, formally

speaking, to different results.

If the formula (algorithm) connecting the model parameters

with the structure-factor magnitudes is imperfect and does not

allow one to reproduce the experimental data precisely, even

for the exact model parameters, then a statistical model for the

necessary corrections of the formula may be used. In this way,

every set of model parameters is associated with a joint

probability distribution of structure-factor magnitudes, rather

than with a single set of calculated magnitudes. If it is assumed

that the set of observed magnitudes is known, the goal of the

new statistical re®nement may be formulated as:

To choose the set of atomic parameters for which the corre-

sponding joint probability distribution of magnitudes is the

most consistent with the experimental data.

Similar to the LSQ case, different ways to evaluate the

consistency numerically may be used and they are the subjects

of the mathematical statistics. One of the possible ways is to

use the likelihood value as this measure of the consistency, as

discussed above. Alternatively, one can search for the prob-

ability distribution (i.e. for corresponding model parameters)

for which the expected values of the structure-factor magni-

tudes are as close as possible to the observed ones (Adams et

al., 1997). Such an approach is close to `the method of

moments' in mathematical statistics. Naturally, other statistical

approaches may be tried as well.

It must be emphasized that a new important object appears

in the statistical re®nement besides the current model par-

ameters and the set of experimental data, namely a prob-

abilistic model for the source of the imperfection in structure-

factor formulae. The choice of the probabilistic model for

irremovable errors plays the key role. This probabilistic model

introduces additional information into the process of re®ne-

ment and the success of the re®nement depends strongly on

the correctness of this information. For example, in the case

considered in x2.1, we might specify the hypothesis regarding

the distribution of the lost atoms. The simplest way is to

suppose that these atoms are distributed uniformly in the unit

cell. At the ®rst stages of a structure investigation, when side-

chain atoms are not included in the model, such a hypothesis

seems to be reasonable. However, later, when the bulk solvent

atoms only are absent, more detailed hypotheses might be

needed. Obviously, different probability hypotheses result in

different likelihood functions and in different re®ned models.

Similarly, in the case considered in x2.2, the hypothesis about

the distribution of errors in the search model must be speci-

®ed. Sometimes, extra information may be used for these

purposes (Read, 2001). Naturally, such probabilistic informa-

tion is much weaker than the deterministic information

introduced by the conventional extension of the model.

Nevertheless, even such weak information may improve the

results of the re®nement.

After some probabilistic models for irremovable errors

have been chosen, the corresponding likelihood must be

derived as a function depending on the variable model par-

ameters. A simpli®cation generally used is to neglect the

correlation of structure factors and to consider calculated

structure factors as independent random variables. In this

case, the joint probability distribution may be written as a

product of individual distributions and the logarithm of the

likelihood becomes a sum of logarithms of these distributions

(see Appendix A).

3. Local structure of the ML target function

In this section, a quadratic approximation for the function (4)

is derived in the case of a centric structure factor. This high-

lights new tendencies that appear in ML-based re®nement in

comparison with the standard LSQ re®nement. The formulae

for acentric re¯ections are very similar to those corresponding

to the centric case; they are derived in Appendix B.

3.1. Quadratic approximation of the residual

If dimensionless variables are introduced as

x � �sF
calc
s

�"s�s�1=2
and p � Fobs

s

�"s�s�1=2
; �24�

then the centric term (4) in the residual (3) becomes

	 �  �x; p� � 1
2x

2 ÿ ln�cosh�px��: �25�
Asymptotic expansions for the logarithmic function and

hyperbolic cosine lead to

 �x; p� ' 1
2�1 ÿ p2�x2 for small x �26�

 �x; p� ' 1
2x

2 for large x: �27�
This explains the behaviour of the function 	 in Fig. 1 and

con®rms the key role of the parameter p. It follows from (26)

that for p2 < 1 the function  �x; p� grows starting from x � 0

and reaches its minimal value at x � 0. For p2 > 1, this func-

tion ®rst decreases when x grows from zero, reaches the

minimal value at x � x�> 0 and then increases in®nitely.

Acta Cryst. (2002). A58, 270±282 Lunin et al. � Likelihood-based refinement. I 275

research papers

electronic reprint



research papers

276 Lunin et al. � Likelihood-based refinement. I Acta Cryst. (2002). A58, 270±282

In the case p2 < 1, the quadratic approximation for the

function  �x; p� in the vicinity of the point of the minimum is

given by (26). For p2 > 1, the quadratic approximation may be

written as

 �x; p� '  �x�; p� � 1
2 

00�x�; p��xÿ x��2; �28�
where x� represents the point of the minimum of  �x; p�. This

point may be found as the solution of the equation

 0�x�; p� � x� ÿ p tanh�px�� � 0; �29�
with the additional condition  00�x�; p�> 0.

Equation (29) has the trivial solution x � 0 for any value of

the parameter p. For p2 < 1, this solution is unique and

 00�x�; p� � 1
2�1 ÿ p2�> 0, so that the conditions of the

minimum are satis®ed. For p2 > 1, two more solutions of (29)

appear, one negative and one positive. The solution x � 0

corresponds now to the local maximum. The positive solution,

which we denote as x� � ��p�, corresponds to the point of the

minimum of  �x; p�. Some methods of practical calculation of

��p� are discussed in Appendix B. The negative solution

corresponds to another local minimum of  �x; p� (see Fig. 4)

with a negative value of x, i.e. with a physically unreasonable

value of the structure-factor magnitude.

The curvature in (28) is

d2

dx2
 �x; p� � 1 ÿ p2 � p2 tanh2�px�: �30�

At the point of the minimum x� � ��p�, (29) is satis®ed and

 00�x�; p� � 1 ÿ p2 � �2�p�: �31�
If ��p� is introduced by (11), c � 1

2 and the function ��p� is

de®ned to be equal to zero for p2 � 1, then the approximation

(28) may be written as

 �x; p� '  �x�; p� � c��p��xÿ ��p��2: �32�
The term  �x�; p� does not depend on x and may be removed

from the residual. Coming back via (24) to the values Fcalc
s and

Fobs
s , we obtain the residual in the form (6)±(7).

3.1.1. Relative form of the residual. Let the relative

magnitudes be de®ned as

eEobs
s � Fobs

s

�"s�s�1=2
and eEcalc

s � Fcalc
s

�"s�s�1=2
: �33�

It follows from (6) and (7) that the quadratic approximation of

the ML residual (3) is equivalent to

eQML �
P
s2S

w�
s ��seEcalc

s ÿeE�
s �2 �34�

with

eE�
s � ��eEobs

s � and w�
s � cs�

ÿeEobs
s �: �35�

This representation highlights new tendencies which appear in

ML re®nement in comparison with the conventional mini-

mization of (1).

3.2. Tendencies of ML refinement

3.2.1. Normalized magnitudes. The ®rst consequence of the

representation (34) is that the ML principle suggests re®ne-

ment in terms of normalized structure-factor magnitude.

Indeed, in the examples considered in x2, the modi®cation

(33) differs from the standard procedure of structure-factor

normalization essentially by a factor depending on the number

of atoms included in the calculation of the denominators. In a

particular case when all the atoms have similar scattering

factors, (33) can be rewritten as

eEobs
s �

�
N

�1 ÿ �2
s �M � �N ÿM�

�1=2

Eobs
s ;

eEcalc
s �

�
N

�1 ÿ �2
s �M � �N ÿM�

�1=2

Ecalc
s ;

�36�

where Eobs
s and Ecalc

s are the normalized magnitudes, N is the

total number of atoms, M is the number of atoms included in

the partial model and �s re¯ects the level of irremovable

coordinate errors in accordance with (18).

3.2.2. Attenuation of target values. Function ��p� de®nes

modi®ed target values eE�
s for calculated magnitudes. Its main

feature is that it assigns zero values to eE�
s if the observed

magnitude Eobs
s is relatively weak:

eE�
s � 0 if eEobs

s � 1: �37�
This means that in the process of ML re®nement the calcu-

lated values of structure factors are ®tted to zero but not to the

corresponding Fobs
s . It must be emphasized that the cut-off

level 1 in (37) is applied to relative magnitudes modi®ed in

accordance with (33) and not to the normalized ones.

When some atoms are not included in the model (x2.1), the

value of "s�s is the mean intensity corresponding to the lost

part of the structure and the condition in (37) means that

Iobs
s � hIlost

s i. The ML criterion suggests that such observed

intensities be considered as those corresponding completely to

the lost atoms and ®ts the contribution of the partial model to

zero.

For intermediate values of relative magnitudes

(1<eEobs
s < 1:5), the modi®ed values eE�

s � ��eEobs
s � are less

than eEobs
s and hence some attenuation of the target values

Figure 4
The function (25) for different values of the parameter p: p � 0:7 (left)
and p � 2 (right).
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occurs. For relatively large magnitudes, the valueseE�
s are close

to the observed oneseEobs
s , especially for the centric re¯ections.

3.2.3. Enhancing of target values. For large p, we have

��p� ' p, so that

eE�
s ' eEobs

s if �Fobs
s �2 � "s�s: �38�

In other words, for strong re¯ections, Fcalc
s is ®tted to Fobs

s in

the case of an incomplete model (x2.1) and to �ÿ1
s Fobs

s in the

case of irremovable coordinate errors in the search model

(x2.2). The appearance of the factor �ÿ1
s may be explained as

follows. If independent random shifts �rj are introduced in

the model coordinates, then the structure-factor magnitudes

for the modi®ed model will be in mean less than the magni-

tudes for the starting model:

hFcalc
s �frj ��rjg�i�r � �sF

calc
s �frjg�<Fcalc

s �frjg�; �39�
where

��s� � hcos 2��s;�rj�i � 1: �40�
As a consequence, if we want the calculated and observed

magnitudes to be close to each other after corrections of the

search model, then before this correction the calculated

magnitudes must be slightly larger than is supposed by Fobs
s , so

that

�sF
calc
s �frsearch

j ��true�g� ' Fobs
s : �41�

It is worthy of note that both tendencies, namely the

suppression of the target [��eEobs
s � instead of eEobs

s ] and its

enhancement (�seEcalc
s instead of eEcalc

s ), are present simulta-

neously. Thus, depending on circumstances, the target for the

calculated magnitude may be either less or larger than the

corresponding observed magnitude.

3.2.4. Removing reflections from the refinement. The

weighting function ��eEobs
s � (Fig. 3) shows that the ML residual

suggests that re¯ections with eEobs
s ' 1 should be down

weighted (and thus removed from the re®nement), i.e. the

re¯ections whose observed intensities are close to mean

intensities corresponding to the atoms excluded from the

re®nement.

4. Numerical tests

The re®nement tests were carried out with CNS complex

(BruÈ nger et al., 1998) using the structure of the Fab fragment

of the monoclonal antibody (Fokine et al., 2000). The full

model included 439 amino acid residues and 213 water

molecules. The crystals corresponded to the space group

P212121 with the unit-cell parameters a � 72.24, b � 72.01,

c � 86.99 AÊ and one Fab molecule per asymmetric unit. To

exclude experimental errors from the analysis, in these tests

the observed data were simulated by the corresponding values

calculated from the complete exact model. As a consequence,

the standard � weighting of the LSQ residual was impossible;

corresponding tests with the experimental data will be

discussed separately. All re®nements were performed in the

dmin > 2.2 AÊ resolution zone.

The goal of the tests was to study how far the minimization

of different crystallographic residuals shifts the atoms of the

partial model from their true positions in order to compensate

the contribution of the excluded atoms. In all tests, the exact

atomic coordinates were used as the starting values. To

determine the effect clearly, in all tests all additional restraints,

such as stereochemical ones, were excluded and X-ray criteria

alone were used for the re®nement. In every test about 800

cycles of minimization were used to ensure the convergence.

Fig. 5 shows the typical behaviour of the mean coordinate

error in the course of the minimization. To check the stability

of the perfect model in the course of the re®nement without

stereochemical restraints, an additional test was performed in

which 800 cycles of re®nement were performed starting from

the complete and exact model. This `re®nement' did not

introduce essential errors in the model coordinates, so the
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Figure 5
The mean deviation of atomic centres from their true positions in the
course of the re®nement starting from a 50% complete exact partial
model: LS, standard least-squares (1); ML, the criterion marked as ML
criterion in the CNS program; LS�, modi®ed criterion (6).

Figure 6
The mean deviation of atomic centres from their true positions after 800
cycles of free-atom re®nement is shown as a function of the completeness
of the starting model. The deleted atoms were chosen randomly from the
whole structure (Fab plus water). The exact coordinates of the rest of the
structure were used as the starting values. Different types of residual are
compared: LS, standard least-squares (1); ML, the criterion marked as
ML criterion in the CNS program; LS�, modi®ed criterion (6).
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errors that appeared in other tests may be attributed to the

incompleteness of the starting model rather than to the

instability of the re®nement caused by the restraints being

switched off.

Three main types of residuals were tested: (i) the least-

squares residual (1) with unit weights (`standard crystal-

lographic residual', as de®ned in CNS if the normalizing scale

factor is neglected; LS in the ®gures below); (ii) the criterion

called `ML-target using amplitudes' in CNS [ML in the ®gures

below; see Adams et al. (1997) for a de®nition]; (iii) the

quadratic approximation (6) of the likelihood-based residual

(3)±(4) (LS� in the ®gures below).

The tests were performed for partial models containing

different numbers of atoms. Two types of partial models were

generated. Partial models of the ®rst type were obtained by

the random deletion of the desired number of atoms from the

whole structure (Fab plus water). Every atom might be

removed from the model with an equal probability. The

models of the second type were obtained by a random deletion

of the water atoms only. Figs. 6 and 7 present the results of the

minimization of the starting models of different completeness.

These results show that the incompleteness of the model can

seriously affect the re®nement. The more atoms are deleted,

the larger are errors in the model that best ®ts the experi-

mental data. Removal of water molecules has a stronger effect

than removal of a similar quantity of atoms randomly in the

unit cell. The reason for this may be the following. The water

molecules are situated at the surface of the protein but not in

the volume. When the same number of atoms are randomly

excluded in both tests, in the case of water molecules they are

distributed less uniformly in the space, leading to a stronger

in¯uence on the structure factors.

None of the tested residuals guards against the deteriora-

tion of an incomplete starting model, so additional restraints

(e.g. stereochemical ones) are necessary to stabilize the

structure. Nevertheless, the modi®ed LS� criterion was found

to be essentially less sensitive to the incompleteness of the

model than the conventional LS criterion. When compared

with the CNS ML criterion, it may be mentioned that the LS�

criterion gave slightly better results for slightly incomplete

models and gave signi®cantly better results for very incom-

plete ones. Two explanations may be proposed. First, it follows

from Adams et al. (1997) that the criterion used in CNS is a

residual that is based on the method of moments for the

estimation of the distribution parameters rather than the pure

likelihood criterion (3)±(4) (see x2.4). So the tests performed

may be considered as a comparative analysis of two ways to

de®ne the consistency of probability distributions with the

observed data for the considered crystallographic problem.

Another reason may be that the LS� criterion, while posses-

sing the same minimum point as the likelihood criterion (3)±

(4), may have better minimization properties (e.g. convexity),

which may be essential in dif®cult re®nement cases.

Additional tests were performed to study which features of

the LS� residual are most important for the re®nement: the

use of the modi®ed target magnitudes F�s or the weights w�
s ?

For this purpose, a minimization of two mixed criteria was

performed:

LS�1 �P
s2S

w�
s �Fcalc

s ÿ Fobs
s �2 �42�

and

LS�2 �P
s2S
�Fcalc

s ÿ F�s �2: �43�

The results of this test (Fig. 8) demonstrate that the use of the

weights w�
s without modi®cation of target magnitudes allows

Figure 8
The mean deviation of atomic centres from their true positions after 800
cycles of free-atom re®nement is shown as a function of the completeness
of the starting model. The deleted atoms were chosen randomly from the
whole structure (Fab plus water). The exact coordinates of the rest of the
structure were used as the starting values. Different types of residual are
compared: LS, standard least-squares (1); ML, the criterion marked as
ML criterion in the CNS program; LS�, modi®ed criterion (6); LS�1,
criterion (42); LS�2, criterion (43).

Figure 7
The mean deviation of atomic centres from their true positions after 800
cycles of free-atom re®nement is shown as a function of the completeness
of the starting model. The deleted atoms were chosen randomly from the
water oxygen atoms only. The exact coordinates of the rest of the
structure were used as the starting values. The ®gures in brackets indicate
the percentage of deleted atoms with respect to all water oxygen atoms.
Different types of residual are compared: LS, standard least-squares (1);
ML, the criterion marked as ML criterion in the CNS program; LS�,
modi®ed criterion (6). A part of the LS� curve from Fig. 6 is shown
(LS�_all) for comparison with the case when atoms are deleted from the
whole structure and not from water molecules only.
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one to obtain the same results as the use of the full LS�

criterion. At the same time, ignoring these weights deterio-

rates the results signi®cantly. This leads to the conclusion that

the main merit of the LS� criterion is based on the inclusion of

the proper weighting scheme in the re®nement process.

5. Conclusions

Statistical modelling of irremovable errors extends the possi-

bilities of structure re®nement. This modelling engages new

information concerning the object under study in a weak form

of statistical hypothesis. Nevertheless, even such poor infor-

mation may result in a signi®cant improvement.

In contrast to the conventional re®nement, the new strategy

associates any set of variable parameters of the model with the

joint probability distribution of structure-factor magnitudes

rather than with particular values of these magnitudes. The

choice of the distribution that is the most consistent with the

experimental information substitutes the conventional search

for the calculated magnitudes, which are as close as possible to

the observed ones.

The analysis of the quadratic approximation of the like-

lihood function highlights two main tendencies of the statis-

tical re®nement that differ from the conventional least-

squares re®nement. Firstly, new target values appear for the

calculated structure-factor magnitudes. These targets are close

to the observed values for strong re¯ections and are different

from the observed values for weak re¯ections. Secondly, the

statistical criterion suggests new weights for contributions of

different re¯ections. Simple tests demonstrate that these

weights seem to be the most important consequence of the

new re®nement strategy. When used with the unit weights, the

modi®ed targets do not produce a visible improvement in

comparison with conventional re®nement. At the same time,

the re®nement with the new weights demonstrates an

improvement, even when the non-modi®ed observed magni-

tudes are used as target values. This is rather typical for

statistical approaches: the main result of their application is

the proper weights and not a drastic changing of goals.

APPENDIX A
From probabilistic modelling of irremovable errors to
the likelihood-based residual

A1. Diagonal Gaussian approximation

The majority of likelihood-based approaches in crystal-

lography use the diagonal Gaussian approximation of a like-

lihood function. This approximation is based on two

assumptions. First, it is supposed that every structure factor

possesses an uncorrelated two-dimensional Gaussian distri-

bution of real and imaginary parts (Luzzati, 1952; Srinivasan &

Parthasarathy, 1976). Second, it is supposed that the joint

probability distribution (j.p.d.) of structure-factor magnitudes

for a set of structure factors may be approximated by the

product of one-dimensional distributions corresponding to

individual re¯ections (Lunin & Urzhumtsev, 1984). The

general way to obtain the residual (3)±(4) is described below

for acentric re¯ections.

First, some probabilistic model is introduced that describes

uncertainties in the structure so that the structure factors

corresponding to the full content of the unit cell become

random variables. Then, for any individual structure factor,

the joint probability distribution of its real and imaginary parts

is studied. It is supposed that this distribution is a particular

case of the two-dimensional Gaussian distribution:

P�ReF; Im F� � �1=�"�� expfÿ��ReFÿ �Fcalc cos 'calc�2
� �ImFÿ �Fcalc sin 'calc�2�="�g: �44�

This formula implies that the real and imaginary parts of the

structure factor are uncorrelated and have equal variances "�.

It follows from (44) that the expected value of the structure

factor is proportional to the value of a `calculated structure

factor':

hFi � �Fcalc: �45�
Such a distribution, which appeared previously in a number of

crystallographic applications (Luzzati, 1952; Sim, 1959; Srini-

vasan & Parthasarathy, 1976; Read, 1986, 1990; Lunin &

Skovoroda, 1995), may be rewritten in terms of the structure-

factor magnitude and phase:

P�F; '� � F

�"�
exp

�
ÿ F2 � ��Fcalc�2

"�

�

� exp

�
2
�FFcalc

"�
cos�'ÿ 'calc�

�
: �46�

If the only available experimental information is the magni-

tude, then the marginal distribution for the magnitude of a

single structure factor is derived by integrating the P�F; '�
over the phase:

P�F� � 2F

"�
exp

�
ÿF 2 � ��Fcalc�2

"�

�
I0

�
2
�FFcalc

"�

�
: �47�

The next signi®cant simpli®cation consists of the assump-

tion that for different re¯ections the corresponding magnitude

values are `almost independent'. In this case, the product of

one-dimensional distributions may approximate the joint

probability distribution for the set fFsgs2S of magnitudes

P fFsgs2S
ÿ � ' Q

s2S
P�Fs�: �48�

If the experimental values of the magnitudes are known, it is

possible to calculate the likelihood value

L �
Y
s2S

2Fobs
s

"s�s
exp

�
ÿ �Fobs

s �2 � ��sFcalc
s �2

"s�s

�
I0

�
2
�sF

obs
s Fcalc

s

"s�s

�
;

�49�
which re¯ects the probability to reproduce the experimental

data fFobs
s gs2S by randomly generating fFsgs2S values with the

distribution (48).

The obtained expression for the likelihood may be used to

solve different problems. First, the likelihood maximization

allows one to estimate irremovable errors provided that the

Acta Cryst. (2002). A58, 270±282 Lunin et al. � Likelihood-based refinement. I 279

research papers

electronic reprint



research papers

280 Lunin et al. � Likelihood-based refinement. I Acta Cryst. (2002). A58, 270±282

calculated magnitudes are ®xed (Lunin & Urzhumtsev, 1984;

Read, 1986). On the other hand, when considering the

calculated magnitudes fFcalc
s gs2S as functions of model par-

ameters (e.g. atomic coordinates), the maximization of the

likelihood may be used as a tool to re®ne the values of atomic

parameters (Pannu & Read, 1996; Bricogne & Irwin, 1996;

Murshudov et al., 1997). In both cases, it is convenient to

replace the maximization of (49) by minimization of the

negative logarithm of the likelihood

ÿ lnL � ÿ
X
s

�
ln

2Fobs
s

"s�s
ÿ �Fobs

s �2
"s�s

�
�
X
s

� ��sFcalc
s �2

"s�s

ÿ ln I0

�
2
�sF

obs
s Fcalc

s

"s�s

��
) min: �50�

Finally, the members that are independent of variable par-

ameters are excluded from the criterion (50).

For centric re¯ections, the corresponding formulae are

slightly different because (44) becomes a one-dimensional

Gaussian distribution and the integration over the phase value

is replaced by the summation over two possible values of the

structure-factor sign. As a consequence, the formula for the

likelihood takes the form

L �
Y
s2S

�
2

�"s�s

�1=2

exp

�
ÿ �Fobs

s �2 � ��sFcalc
s �2

2"s�s

�

� cosh

�
�sF

obs
s Fcalc

s

"s�s

�
: �51�

A2. Non-diagonal joint probability distributions

The approximation (48) does not consider the correlation of

magnitudes. This correlation may be taken into account either

analytically or with the use of numerical simulation proce-

dures. An explicit representation of the saddle-point

approximation for j.p.d. was used to derive the formula for the

likelihood in the case of the space group I432 (Lunin, 1997;

Petrova, Lunin, Lunina & Skovoroda, 1999; Petrova, Lunin &

Podjarny, 1999). This representation was constructed on the

base of the saddle-point approximation of the j.p.d. suggested

by Bricogne (1984).

Monte Carlo type simulation procedures for the calculation

of the non-diagonal likelihood were used for low-resolution ab

initio phasing (Lunin et al., 1998; Petrova, Lunin, Lunina &

Skovoroda, 1999; Petrova, Lunin & Podjarny, 1999, 2000). In

this approach, the computer-based generation of the set of

random parameters is repeated many times, followed by the

calculation of corresponding structure factors. The generated

set is accepted if the coef®cient of correlation between the

calculated and observed magnitudes exceeds some speci®ed

level. The likelihood value is estimated as the ratio of the

number of accepted sets to the total number of generated sets.

APPENDIX B
Quadratic approximation for the likelihood-based
residual

It was shown in x3 that the study of the likelihood-based

residual (3)±(4) could be reduced to the study of the function

 �x; p� � x2 ÿ ln�I0�2px�� for acentric reflections,
1
2x

2 ÿ ln�cosh�px�� for centric reflections.

�
�52�

Formally speaking, the function (52) is de®ned for all values of

the variable x and the parameter p, but as a result of symmetry

properties,

 �ÿx; p� �  �x; p� and  �x;ÿp� �  �x; p�; �53�
its study may be restricted to the region of physically

reasonable non-negative values of x and p. Two different

formulae in (52) force one to study the acentric and centric

cases separately, and we start from the latter, for which a

rigorous mathematical analysis is easier.

B1. Centric reflections

For centric re¯ections,

 �x; p� � 1
2x

2 ÿ ln�cosh�px��: �54�
While at the origin and at in®nity this function behaves simi-

larly for all values of p, i.e.

 �0; p� � 0 and  �x; p� ! 1 when x!1; �55�
for intermediate values of the argument x, its behaviour

strongly depends on the parameter p. The analysis of the

derivatives

 0�x; p� � xÿ p tanh�px� �56�
and

 00�x; p� � 1 ÿ p2

cosh2�px� � 1 ÿ p2�1 ÿ tanh2�px�� �57�

helps to study the function. The second derivative grows

monotonically from 1 ÿ p2 to 1 when x varies from 0 to 1. If

p2 < 1, then  00�x; p� is everywhere positive so that the ®rst

derivative  0�x; p� grows monotonically from 0 to 1 and thus

is always non-negative. This means that  �x; p� also grows

monotonically from 0 to 1 when x varies from 0 to 1 and

there exists a single minimum of  �x; p� which is attained for

x � 0 (Fig. 4, left).

Quite differently, for p2 > 1, the second derivative  00�x; p�
changes its sign once from minus to plus, and thus  0�x; p� ®rst

decreases from zero to some negative value and then grows to

in®nity, passing once through the zero value. This means in

turn that, for p2 > 1, the function  �x; p� ®rst decreases from

zero to some negative value and then grows monotonically to

in®nity. As a result of the relations (53), this means that for

p2 > 1 the function  �x; p� has a local maximum at x � 0 and

two symmetric local minima (Fig. 4, right). The coordinates of

these points may be found as a solution of the equation

 0�x; p� � 0, i.e.
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x � p tanh�px�: �58�
For any p, this equation has a trivial solution, x�0 � 0. This

solution is unique when p2 < 1 and corresponds to the

minimum of the function  . Two additional solutions, x��> 0

and x�ÿ � ÿx��< 0, of (58) are found at parameter values

p � ÿ1 and p � �1. These new solutions correspond to the

minima of  �x; p�, while x�0 � 0 corresponds now to the local

maximum. Fig. 9 shows the bifurcation diagram for the solu-

tions of (58). Let ��p� denote the point of the minimum of the

function  �x; p� in the interval 0 � x <1:

��p� � 0 for p � 1;
x�� for p > 1:

�
�59�

Fig. 2 shows the plot of this function.

B2. Quadratic approximation of w

For p< 1, the minimum of  is attained for x� � 0 and the

approximation

 �x; p� ' 1
2�1 ÿ p2�x2 �60�

may be obtained directly from the expansion of logarithm and

hyperbolic cosine functions into Taylor series in the vicinity of

x� � 0.

For p> 1, the quadratic approximation in the vicinity of the

point x� � ��p� of the minimum is

 �x; p� '  ���p�; p� � 1
2 

00���p�; p��xÿ ��p��2: �61�
At the point of the minimum x� � ��p�, (58) is satis®ed and

the general expression (57) may be simpli®ed to

 �x; p� ' constant � 1
2�1 ÿ p2 � �2�p���xÿ ��p��2: �62�

B3. Practical calculation of l(p) values

For a given value of p> 1, the corresponding value ��p�
may be calculated by one of iterative procedures for the

solution of non-linear equations. Alternatively, an asymptotic

formula for this function can be derived as follows.

Suppose that in the vicinity of the point p � 1 the function

��p� is represented by a series in powers of �pÿ 1�1=2:

��p� � �pÿ 1�1=2�a0 � a1�pÿ 1� � a2�pÿ 1�2 � . . .�; �63�
where a0, a1, . . . are some coef®cients. Substituting this

expression for ��p� in (58) and collecting the terms with equal

powers in the Taylor expansion at the right side of the equa-

tion, we obtain linear equations for the coef®cients a0, a1, . . . .

This gives an asymptotic formula

��p� � �6�pÿ 1��1=2

�
1 ÿ 11

20
�pÿ 1� � 3889

5600
�pÿ 1�2 � . . .

�
;

for p! 1� : �64�
A similar approach results in an asymptotic formula

��p� � p
�

1 ÿ 2 exp�ÿ2p2� ÿ �8p2 ÿ 2��exp�ÿ2p2��2
ÿ �48p4 ÿ 24p2 � 2��exp�ÿ2p2��3 � . . .

	
;

for p!1: �65�
Numerical tests with these formulae show that the approxi-

mation (64) may be applied for 1< p< 1:3, while for p � 1:3
the formula (65) is more suitable.

One more way to obtain asymptotic formulae for ��p� is to

derive the differential equation for this function and to look

for its solutions in the form of (63) or (65). Differentiating the

identity

��p� � p tanh�p��p��; �66�
we obtain an equation for ��p� in the form

d�

dp
� ÿ�

p
1 � 2

p2 ÿ �2 ÿ 1

� �
: �67�

The conditions

��1� � 0; ��p�> 0; for p> 1; �68�
must be attached to identify the unique solution.

B4. Acentric reflections

For acentric re¯ections,

 �x; p� � x2 ÿ ln�I0�2px��; �69�
 0�x; p� � 2�xÿ pM�2px�� �70�

and

 00�x; p� � 2 1 ÿ 2p2 1 ÿ 1

2px
M�2px� ÿM�2px�2

� �� �
: �71�

Here,

M�z� � I1�z�=I0�z� �72�
and the equation

dM�z�
dz

� 1 ÿ 1

z
M�z� ÿM�z�2 �73�

was used, which follows immediately from the main properties

of the modi®ed Bessel functions.
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Figure 9
Bifurcation diagram for the solutions of the equation x � p tanh�px�. The
solutions x� are shown as a function of the parameter p.
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Numerical tests had shown similar behaviour of the func-

tion  �x; p� for centric and acentric cases, while the authors

failed to ®nd rigorous mathematical proofs for the uniqueness

of the minimum of  �x; p� for positive x in the acentric case.

For p< 1, the quadratic approximation of the function (69)

becomes

 �x; p� ' �1 ÿ p2�x2 �74�
and for p> 1 it is

 �x; p� ' constant � 2�1 ÿ p2 � �2�p���xÿ ��p��2: �75�
Similarly to the centric case, asymptotic formulae may be

derived for the function ��p� de®ned now as the positive

solution of the equation

x � p
I1�2px�
I0�2px�

: �76�

For p close to 1, the function is approximated by

��p� � �pÿ 1�1=2

�
2 ÿ 5

6
�pÿ 1� � 199

144
�pÿ 1�2

ÿ 3547

2880
�pÿ 1�3 � 93451

82944
�pÿ 1�4 � . . .

�
;

for p! 1� : �77�
For large p, an asymptotic formula is

��p� � p

�
1 ÿ 1

4

�
1

p

�2

ÿ 3

32

�
1

p

�4

ÿ 9

128

�
1

p

�6

ÿ 141

2048

�
1

p

�8

ÿ . . .

�
; for p!1: �78�

Similarly to the centric case, the ®rst and second formulae may

be applied for 1< p< 1:3 and for p � 1:3, respectively.

The differential equation for the function ��p� is now

d�

dp
� ÿ�

p
1 � 1

p2 ÿ �2 ÿ 1

� �
: �79�
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