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Powder Diffraction and Electron Microscopy
a powerful combination

Combinations used are:
1) to help in indexing powder pattern by
- determine lattice parameters from SAED patterns

- verifying indexed powder patterns
- determine symmetry

2) determine crystal structure usings electron crystallography
and then refining the structure with powder data

Solving crystal structures by integrating the two data sets
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High resolution transmission electron microscopy
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High resolution transmission electron microscopy
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High resolution transmission electron microscopy
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Electron Microscopy

High resolution transmission electron microscopy
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Fourier transform =» Structure factor amplitudes and phases
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Structure Envelope

A structure envelope is a curved surface that separates regions
of high electron density from those of low electron density

— Isosurface of a low resolution electron density map

Reflection2 11 100, 101, 102, 002

phase can be fixed Phases can be obtained from HRTEM images

Tuesday, June 7, 2011



Powder Diffraction and Electron Microscopy

a powerful combination

Introduction
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FOCUS

Zeolites
3-dimensional, 4-connected framework structure
corner-sharing TO, tetrahedra

known T-O bond lengths, O-T-O angles and T-O-T angles

0-Si-O 109.5°

N—_Si-0-Si 145°

’}/\Si-o 1.61A
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approximate unit cell contents
individual minimum distances
selected reflection intensities
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peak height
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» electron density map
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|
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approximate unit cell contents
individual minimum distances
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» electron density map
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assignment of atoms to
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TNU-9

Unit Cell

Space Group
a

b
C
B

Reflections
powder pattern (d_. =1.17A)

overlapping (0.3*FWHM)

FOCUS
reflections used (65% strongest)

— no solution

C2/m

28.2219 A
20.0123 A
19.4926 A

92.33°

3705
3154

1481

85% overlap
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approximate unit cell contents
FOCUS individual minimum distances use phases from HRTEM

selected reflection intensities reciprocal space
I
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use structure envelope : :
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TNU-9

Unit Cell

Space Group
a

b
C
B

Reflections
powder pattern (d_. =1.17A)

overlapping (0.3*FWHM)

FOCUS
reflections used (65% strongest)
structure envelope
phases from HRTEM

— solution after 16 days

C2/m
28.2219 A
20.0123 A
19.4926 A
92.33°

3705
3154

1481

258
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powder diffraction and electron microscopy
structure envelope

Combinations of XPD and electron microscopy
TNU-9  (FOCUS + HRTEM)
m) IM5  (pCF+HRTEM)
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Precession electron diffraction
weak reflection elimination
phase retrieval

FAKED electron diffraction data
SSZ-82

Conclusions
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IM-5

Unit Cell
Space Group Cmcm
a 14.2088 A
b 67.2368 A
C 19.9940
Reflections
powder pattern (d_. =1.05 A) 4120
. e 85% overlap
overlapping (0.3*FWHM) 3499
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IM-5

Unit Cell
Space Group
a
b
c

Reflections
powder pattern (d_. =1.05 A)

overlapping (0.3*FWHM)

Superflip
no phases
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Cmcm
14.2088 A
19.9940

4120

2499 85% overlap

promising, but...
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taken by Zhanbing He
Stockholm University
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approximated model derived from HRTEM data in C2cm
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IM-5
introduced in Superflip - still no good solutions

approximated model derived from HRTEM data in C2cm

36 Si atoms

geometry strained
calculated powder diffraction pattern does not fit measured one
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IM-5

Superflip run with
1000 starting phase sets generated from HRTEM model
(each &, ,, allowed to vary by up to 25%)
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Superflip run with
1000 starting phase sets generated from HRTEM model
(each &, ,, allowed to vary by up to 25%)
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Superflip run with
1000 starting phase sets generated from HRTEM model
(each &, ,, allowed to vary by up to 25%)

structure envelope used to enforce channel system

Five best electron density maps averaged
C2cm symmetry imposed

Peaks interpreted in C2cm
geometry not strained

main features of powder pattern reproduced

Structure successfully refined in Cmcm
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24 Si-atoms in the asymmetric unit
unusual 2-dimensional 10-ring channel system
288 Si and 576 O = 864 atoms in the unit cell
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Unit Cell
Space Group C2/c or Cc
a 20.507 A
b 13.394A
c 20.099 A
B 102.2°
Reflections
powder pattern (d_. =0.95 A) 3258
. o 83% overlap
overlapping (0.3*FWHM) 2717
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Unit Cell
Space Group C2/c or Cc
a 20.507 A
b 13.394A
c 20.099 A
B 102.2°
Reflections
powder pattern (d, . =0.95 A) 3258
overlapping (0.3*FWHM) 2717
Superflip
with structure envelope partial solution

above used as seed for 100 phase sets
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24 Si atoms in the asymmetric unit
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SSZ-74

Superflip
symmetry ambiguous, C2/c assumed
11 Si atom positions taken from electron density map
12th Si atom position added to create a fully 4-connected net

Molecular modelling
to estimate the position of the structure directing agent

Rietveld refinement

C2/c geometry of 12th Si distorted

Cc 24 Si atoms in the asymmetric unit
improvement in profile fit
distortion still present (2 Si)

Occupancy refined one Si disappeared

Final structure 23 Si + 1 vacancy

Structure solution gave the right answer!
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Powder Diffraction and Electron Microscopy

a powerful combination

Introduction
powder diffraction and electron microscopy
structure envelope

Combinations of XPD and electron microscopy
TNU-9  (FOCUS + HRTEM)
IM-5  (pCF + HRTEM)
SSZ-74  (pCF + HRTEM)

=) Precession electron diffraction
weak reflection elimination
phase retrieval

FAKED electron diffraction data
SSZ-82

Conclusions
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Electron Diffraction

Precession electron diffraction

electron beam R. Vincent and P. Midgley,
- o Ultramicroscopy 53,
o o " 271-281 (1994)
/.7  Specimen
000 000 Descan

reduced multiple scattering
=» intensities more reliable
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X-ray Powder and Electron Diffraction

Combining PED data with X-ray powder diffraction data

weak reflection elimination
identify weak reflection in PED patterns
remove these reflections from the X-ray intensity extraction

66
9.9 10.0 10.1 9.9 10.0 101 9.7 10.0 10.3
Equipartitioned True WRE

Tuesday, June 7, 2011



X-ray Powder and Electron Diffraction

Combining PED data with X-ray powder diffraction data

phase retrieval

Tuesday, June 7, 2011



X-ray Powder and Electron Diffraction

Combining PED data with X-ray powder diffraction data

phase retrieval
run charge flipping using just the reflections in the plane

Tuesday, June 7, 2011



X-ray Powder and Electron Diffraction

Combining PED data with X-ray powder diffraction data
phase retrieval

run charge flipping using just the reflections in the plane
=» phases for these reflections

Tuesday, June 7, 2011



X-ray Powder and Electron Diffraction

Combining PED data with X-ray powder diffraction data

phase retrieval
run charge flipping using just the reflections in the plane
=» phases for these reflections
ca 70% of total |F,,,| amplitudes are correctly phased

Tuesday, June 7, 2011



Combining PED data with X-ray powder diffraction data

phase retrieval

Tuesday, June 7, 2011

run charge flipping using just the reflections in the plane
=>» phases for these reflections
ca 70% of total |F,,,| amplitudes are correctly phased

X-ray Powder and Electron Diffraction

PED amplitudes
+ CF phases



X-ray Powder and Electron Diffraction

Combining PED data with X-ray powder diffraction data

phase retrieval

run charge flipping using just the reflections in the plane

=>» phases for these reflections
ca 70% of total |F,,,| amplitudes are correctly phased

z

T FY . "
T s | M
o IR
i

a

Tuesday, June 7, 2011

PED amplitudes
+ CF phases



X-ray Powder and Electron Diffraction

Combining PED data with X-ray powder diffraction data

phase retrieval
run charge flipping using just the reflections in the plane

=>» phases for these reflections

ca 70% of total |F,,,| amplitudes are correctly phased
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X

PED amplitudes
+ CF phases

Phases are almost as good as those from HRTEM, but easier to obtain
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Powder Diffraction and Electron Microscopy

a powerful combination

Introduction
powder diffraction and electron microscopy
structure envelope

Combinations of XPD and electron microscopy
TNU-9  (FOCUS + HRTEM)
IM-5  (pCF + HRTEM)
SSZ-74  (pCF + HRTEM)

Precession electron diffraction
weak reflection elimination
phase retrieval

=) FAKED electron diffraction data
SSZ-82

Conclusions

Tuesday, June 7, 2011



FAKED electron diffraction

Tuesday, June 7, 2011



FAKED electron diffraction

Tuesday, June 7, 2011



FAKED electron diffraction

It is possible to get phases from 2D electron diffraction data

Tuesday, June 7, 2011



FAKED electron diffraction

It is possible to get phases from 2D electron diffraction data

Intensities are not very accurate, right?

Tuesday, June 7, 2011



FAKED electron diffraction Q

&

It is possible to get phases from 2D electron diffraction data

Intensities are not very accurate, right?

Extracted intensities from powder data are also not very
accurate

Tuesday, June 7, 2011



FAKED electron diffraction @

It is possible to get phases from 2D electron diffraction data
Intensities are not very accurate, right?

Extracted intensities from powder data are also not very
accurate

Question:

Tuesday, June 7, 2011



FAKED electron diffraction Q

It is possible to get phases from 2D electron diffraction data
Intensities are not very accurate, right?

Extracted intensities from powder data are also not very
accurate

Question:
Can we also get phases from 2D - X-ray powder data?

Tuesday, June 7, 2011



FAKED electron diffraction @

It is possible to get phases from 2D electron diffraction data
Intensities are not very accurate, right?

Extracted intensities from powder data are also not very
accurate

Question:
Can we also get phases from 2D - X-ray powder data?

Yes, we can

Tuesday, June 7, 2011



FAKED electron diffraction Q

It is possible to get phases from 2D electron diffraction data
Intensities are not very accurate, right?

Extracted intensities from powder data are also not very
accurate

Question:
Can we also get phases from 2D - X-ray powder data?

Yes, we can
faked electron diffraction
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FAKED electron diffraction Q

It is possible to get phases from 2D electron diffraction data
Intensities are not very accurate, right?

Extracted intensities from powder data are also not very
accurate

Question:
Can we also get phases from 2D - X-ray powder data?

Yes, we can

2D-XPD
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Zeolite SSZ-82

Unit Cell
Space Group Pmmn
a 24.278 A
b 11.466 A
c 14.113 A
Reflections
powder pattern (d_. =0.95 A) 3116
. e 89% overlap
overlapping (0.25*FWHM) 2783
dmin 0.9 A
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Zeolite SSZ-82

2D-XPD fourier maps
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Zeolite SSZ-82

best “superflip” solutions

normal run using phases from 2D-XPD

41
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HRTEM for phase and symmetry information

The framework structures of three complex polycrystalline zeolites
have been solved by combining powder diffraction with HRTEM data
TNU-9 (24 Si) IM-5 (24 Si) SSZ-74 (23 Si)
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can deal with more than 800 atoms in the unit cell

The precession electron diffraction technique
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