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To minimize the residual function using a non-linear least squares 
algorithm

and thus refine the crystal structure of a compound (cell 
parameters, atomic positions and Debye-Waller factors)

Goal of the Rietveld method
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Diffraction intensities

The intensity in a powder diffractometer

The structure factor:€ 
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Diffraction analyses

Phase identifications (crystalline and amorphous)

Crystal structure determination

Crystal structure refinements

Quantitative phase analysis (and crystallinity determination)

Microstructural analyses (crystallite sizes - microstrain)

Texture analysis

Residual stress analysis

Order-disorder transitions and compositional analyses

Thin films



To minimize the residual function:

where:

using a non-linear least squares algorithm

Goal of the Rietveld method
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The classical Rietveld method
The function to minimize by a least squares method (non linear):

the spectrum is calculated by the classical intensity equation:

The spectrum depends on 

phases: crystal structure, microstructure, quantity, cell volume, 
texture, stress, chemistry etc.

instrument geometry characteristics: beam intensity, Lorentz-
Polarization, background, resolution, aberrations, radiation etc.

sample: position, shape and dimensions, orientation.

Each of the quantity can be written in term of parameters that can 
be refined (optimized).
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The spectrum (at a 2θ point i) is determined by:

a background value

– some reflection peaks that can be described by different terms:

Diffraction intensity (determines the “height” of the peaks)

• Line broadening (determines the shape of the peaks)

• Number and positions of the peaks

The classical Rietveld method
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The classical Rietveld method

The more used background in Rietveld refinements is a 
polynomial function in 2θ :

Nb is the polynomial degree

an the polynomial coefficients

For more complex backgrounds specific formulas are available

It is possible to incorporate also the TDS in the background
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The classical Rietveld method

Starting with the “Diffraction Intensities”, the factors are:

A scale factor for each phase

A Lorentz-Polarization factor

The multiplicity 

The structure factor

The temperature factor

The absorption

The texture

Problems: extinctions, absorption contrast, graininess, sample 
volume and beam size, inhomogeneity, etc. 
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The classical Rietveld method

The scale factor (for each phase) is written in classical Rietveld 
programs as:

Sj = phase scale factor (the overall Rietveld generic scale factor)

SF = beam intensity (it depends on the measurement)

fj = phase volume fraction

Vj = phase cell volume (in some programs it goes in the F 
factor)

In Maud the last three terms are kept separated.
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The classical Rietveld method

The Lorentz-Polarization factor:

it depends on the instrument

geometry

monochromator (angle α)

detector

beam size/sample volume

sample positioning (angular)

For a Bragg-Brentano instrument:
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The classical Rietveld method

Under a generalized structure factor we include:

The multiplicity of the k reflection (with h, k, l Miller indices): mk

The structure factor

The temperature factor: Bn

N = number of atoms

xn, yn, zn coordinates of the nth atom

fn, atomic scattering factor
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The classical Rietveld method

The absorption factor:

in the Bragg-Brentano case (thick sample):

For the thin sample or films the absorption depends on 2θ

For Debye-Scherrer geometry the absorption is also not constant

There could be problems for microabsorption (absorption contrast)
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The classical Rietveld method

The texture (or preferred orientations):

The March-Dollase formula is used:

PMD is the March-Dollase parameter

summation is done over all equivalent hkl reflections (mk)

αn is the angle between the preferred orientation vector and the 
crystallographic plane hkl (in the crystallographic cell coordinate system)

The formula is intended for a cylindrical texture symmetry 
(observable in B-B geometry or spinning the sample)
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The classical Rietveld method

The profile shape function:

different profile shape function are available:

Gaussian (the original Rietveld function for neutrons)

Cauchy

Voigt and Pseudo-Voigt (PV)

Pearson VII, etc.

For example the PV: 

the shape parameters are: 
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The classical Rietveld method

The number of peaks is determined by the symmetry and space 
group of the phase.

One peak is composed by all equivalent reflections mk

The position is computed from the d-spacing of the hkl reflection 
(using the reciprocal lattice matrix):
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Quality of the refinement

Weighted Sum of Squares:

R indices (N=number of points, P=number of parameters):

The goodness of fit:
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The R indices

The Rwp factor is the more valuable. Its absolute value does not depend 
on the absolute value of the intensities. But it depends on the 
background. With a high background is more easy to reach very low 
values. Increasing the number of peaks (sharp peaks) is more difficult 
to get a good value.

Rwp < 0.1 correspond to an acceptable refinement with a medium 
complex phase

For a complex phase (monoclinic to triclinic) a value < 0.15 is good

For a highly symmetric compound (cubic) with few peaks a value < 
0.08 start to be acceptable

With high background better to look at the Rwp background 
subtracted.

The Rexp is the minimum Rwp value reachable using a certain number of 
refineable parameters. It needs a valid weighting scheme to be reliable.



WSS and GofF (or sigma)

The weighted sum of squares is only used for the minimization 
routines. Its absolute value depends on the intensities and number 
of points.

The goodness of fit is the ratio between the Rwp and Rexp and cannot 
be lower then 1 (unless the weighting scheme is not correctly 
valuable: for example in the case of detectors not recording exactly 
the number of photons or neutrons).

A good refinement gives GofF values lower than 2.

The goodness of fit is not a very good index to look at as with a 
noisy pattern is quite easy to reach a value near 1.

With very high intensities and low noise patterns is difficult to reach 
a value of 2.

The GofF is sensible to model inaccuracies.



Why the Rietveld refinement is widely 
used?

Pro

It uses directly the measured intensities points

It uses the entire spectrum (as wide as possible)

Less sensible to model errors

Less sensible to experimental errors

Cons

It requires a model

It needs a wide spectrum

– Rietveld programs are not easy to use

– Rietveld refinements require some experience (1-2 years?)

Can be enhanced by:

More automatic/expert mode of operation

Better easy to use programs



Rietveld procedure

Experiment:
choose the correct instrument/s
select the experiment conditions
prepare the sample and collect the pattern/s

Analysis:
verify the data quality and perform the qualitative analysis
Rietveld refinement:

load or input the phases in the sample
adjust manually some parameters (cell, intensities, background)
refine overall intensities and background
refine peaks positions
refine peaks shapes
refine structures

Assess the results



Starting point: defining the phases

We need to specify which phases we will work with (databases)



Adjusting manually: cell parameters, 
intensities

The peaks positions must be sufficiently correct for a good start; 
better also to adjust scale factors and background



Step 1: Refining scale factors and 
background

After 5 iterations the Rwp is 26.5 %; intensities look better; we use 
only one overall B factor for all atoms.



Step 2: peaks positions

Adding to refinement cell parameters and 2Θ displacement; Rwp 
now is at 24.8%; major problems are now peaks shapes



Step 3: peaks shapes

We add to the refinement also peaks shapes parameters; either the 
Caglioti parameters (classical programs) or crystallite sizes and 
microstrains; Rwp is now at 9.18 %



Step 4: crystal structure refinement

Only if the pattern is very good and the phases well defined. We 
refine separated B factors and only the coordinates that can be 
refined. Final Rwp at 8.86%


