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GOAL OF THE RIETVELD METHOD
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% To minimize the residual function using a non-linear least squares
algorithm

WSS =¥ w, (I - I;al‘f)z,W. :

l ==_Ipr

A

s and thus refine the crystal structure of a compound (cell
parameters, atomic positions and Debye-Waller factors)
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%¢ The intensity 1n a powder diffractometer
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s¢ The structure factor:
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DIFFRACTION ANALYSES
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Phase 1dentifications (crystalline and amorphous)

R

S Crystal structure determination

Al

% Crystal structure refinements

Al

% Quantitative phase analysis (and crystallinity determination)

% Microstructural analyses (crystallite sizes - microstrain)

Al

% Texture analysis

% Residual stress analysis

.

% Order-disorder transitions and compositional analyses

3¢ Thin films



GOAL OF THE RIETVELD METHOD
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% using a non-linear least squares algorithm
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s The function to minimize by a least squares method (non linear):

Al

% the spectrum 1s calculated by the classical intensity equation:
Nphases f Npeaks

Plas N = S LJF, ['5,(26,-26, )P, A, + ke,
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s The spectrum depends on

S

s phases: crystal structure, microstructure, quantity, cell volume,
texture, stress, chemistry etc.

.

¢ Instrument geometry characteristics: beam intensity, Lorentz-
Polarization, background, resolution, aberrations, radiation etc.

A

¢ sample: position, shape and dimensions, orientation.
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« Each of the quantity can be written in term of parameters that can
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be refined (optimized).



THE CLASSICAL RIETVELD METHOD
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% The spectrum (at a 20 point 1) is determined by:

* ¢ a background value
» — some reflection peaks that can be described by different terms:
» s¢ Diffraction intensity (determines the “height” of the peaks)

-

» e Number and positions of the peaks

e Line broadening (determines the shape of the peaks)




Nphases f Npeaks

i) = S L|F['5,(26,-26,,)P, A, +|bkg;
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¢ The more used background in Rietveld refinements is a
polynomial function in 20 :
Nb

bkg(26,) = ) a,(26,)"

n=0

s N, 1s the polynomial degree

st a_the polynomial coefficients
n
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5¢ For more complex backgrounds speciﬁc formulas are available
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s¢ It 1s possible to incorporate also the TDS 1n the background



Nphases f Npeaks

i) = S LF, ['5,(26,-26,,)P, A, + bk,
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s Starting with the “Diffraction Intensities”, the factors are:
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s¢ A scale factor for each phase
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s¢ A Lorentz-Polarization factor
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The multiphicity
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% The structure factor
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['he temperature factor
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T'he absorption
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»~ 1 he texture
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Problems: extinctions, absorption contrast, graininess, sample
volume and beam size, inhomogeneity, etc.



Nphases f Npeaks
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% The scale factor (for each phase) 1s written in classical Rietveld

programs as:
S, =S¢ i
2

% S, = phase scale tactor (the overall Rietveld generic scale factor)

% S, = beam ntensity (it depends on the measurement)

S f) = phase volume fraction

% V. = phase cell volume (in some programs it goes in the F
factor)
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Nphases f Npeaks
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Nphases f Npeaks
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¢ Under a generalized structure factor we include:

s¢ The multiplicity of the k reflection (with h, k, | Miller indices): m,
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s¢ The structure factor
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The temperature factor: B
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3¢ N = number of atoms
w® X, Vo Z coordinates of the n* atom

s¢ I, atomic scattering factor
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¢ The absorption factor:
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in the Bragg-Brentano case (thick sample):

1 . : . i
A, = = u 1s the linear absorption coefficient of the sample
u

Al

¢ For the thin sample or films the absorption depends on 26
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% For Debye-Scherrer geometry the absorption is also not constant

Low absorption High absorption
Scattering from throughout the sample Scattering from the surface only
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s There could be problems for microabsorption (absorption contrast)



Nphases f Npeaks

e oy =5 S L, ['s,(26,-26,, JBJA, + bkg,
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s¢ The texture (or preferred orientations):

¢ The March-Dollase formula 1s used:
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st P _1s the March-Dollase parameter
st summation 1s done over all equivalent hkl reflections (m,)

% o 1s the angle between the preferred orientation vector and the
crystallographic plane hkl (in the crystallographic cell coordinate system)

¢ The formula 1s intended for a cylindrical texture symmetry
(observable in B-B geometry or spinning the sample)



Nphases f Npeaks
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s¢ The profile shape function:

Al

s¢ different profile shape function are available:

A

s Gaussian (the original Rietveld function for neutrons)

.

s Cauchy
s Voigt and Pseudo-Voigt (PV)

Al

s¢ Pearson VI, etc.
s For example the PV:

PV(ZHZ % zgk) & In nk( +1 )+ (1 i nk)e_Siz’k In 2 Si’k > 261 S 29k

Wy

Caglioti formula: =W +Vtan0+ Utan’ 0

% the shape parameters are: N,
Gaussianity: n= Ecn(26)n
n=0



Nphases f Npeaks

Tl Y = Y L|F, ['S,(26,-R8E))P. A, + bkg,
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¢ The number of peaks is determined by the symmetry and space
group of the phase.

s One peak 1s composed by all equivalent reflections m,

NA

s¢ The position 1s computed from the d-spacing of the hkl reflection
(using the reciprocal lattice matrix):
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% Weighted Sum of Squares:

wss= 3Pl - we

¢ R indices (N=number of points, P=number of parameters):
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RW
s The goodness of fit: Sl S R :



s« The R factor 1s the more valuable. Its absolute value does not depend

on the absolute value of the intensities. But it depends on the
background. With a high background i1s more easy to reach very low
values. Increasing the number of peaks (sharp peaks) 1s more dithcult

to get a good value.
% pr < 0.1 correspond to an acceptable refinement with a medium

complex phase

% For a complex phase (monoclinic to triclinic) a value < 0.15 1s good

% For a highly symmetric compound (cubic) with few peaks a value <
0.08 start to be acceptable

s« With high background better to look at the R background
subtracted.

s« The Rexp 1s the minimum pr value reachable using a certain number of

refineable parameters. It needs a valid weighting scheme to be rehable.



Al

s The weighted sum of squares 1s only used for the minimization
routines. Its absolute value depends on the intensities and number
of points.

% The goodness of fit is the ratio between the R and R, and cannot

be lower then 1 (unless the weighting scheme 1s not correctly

valuable: for example 1n the case of detectors not recording exactly
the number of photons or neutrons).

A

s A good relinement gives GofF values lower than 2.

NA

s The goodness of fit 1s not a very good index to look at as with a
noisy pattern is quite easy to reach a value near 1.

Al

¢ With very high intensities and low noise patterns 1s dithicult to reach
a value of 2.

Al

s¢ The GofF 1s sensible to model inaccuracies.
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« It uses directly the measured intensities points
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[t uses the entire spectrum (as wide as possible)

s¢ Less sensible to model errors

Ve ]

« Less sensible to experimental errors
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N CODS
s It requires a model
s It needs a wide spectrum

— Rietveld programs are not easy to use

— Rietveld refinements require some experience (1-2 years?)
¢ Can be enhanced by:
¢ More automatic/expert mode of operation

¢ Better easy to use programs



Al

2 Experiment:

s¢ choose the correct instrument/s

A

s select the experiment conditions

s prepare the sample and collect the pattern/s

A

¢ Analysis:
s verity the data quality and perform the qualitative analysis
% Rietveld refinement:
% load or input the phases in the sample
s adjust manually some parameters (cell, intensities, background)

% refine overall intensities and background

Al

s¢ refine peaks positions

Al

%¢ refine peaks shapes

A

¢ refine structures

S

5¢ Assess the results



STARTING POINT: DEFINING THE PHASES

¢ We need to specity which phases we will work with (databases)
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ADJUSTING MANUALLY: CELL PARAMETERS,
INTENSITIES

s The peaks positions must be suthciently correct for a good start;
better also to adjust scale factors and background
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STEP 1: REFINING SCALE FACTORS AND
BACKGROUND

Al

s¢ After 5 iterations the Rwp 1s 26.5 %; intensities look better; we use
only one overall B factor for all atoms.

100.0—

500

i J*w‘W.M @U
T-PSZ | )
corundum by

lntensityl/2 [Countl/zl

b :
no o) S (1 2 B B | X A (1 (A U1 L (U (1 CO U [h
) ) U I U U R D L I A R N D L O O e e

Mwwﬂwwwwwmww

100.0 150.0
2-Theta [degrees]




STEP 2: PEAKS POSITIONS

¢ Adding to refinement cell parameters and 20 displacement; Rwp
now 1s at 24.8%; major problems are now peaks shapes
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STEP 3: PEAKS SHAPES

Al

¢ We add to the refinement also peaks shapes parameters; either the

Caglioti parameters (classical programs) or crystallite sizes and
microstrains; Rwp 1s now at 9.18 %
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STEP 4: CRYSTAL STRUCTURE REFINEMENT

¢ Only 1f the pattern 1s very good and the phases well defined. We

refine separated B factors and only the coordinates that can be

refined. Final Rwp at 8.86%
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