Newsletter

search results

results of search on CRYSTALLOGRAPHY JOURNALS ONLINE

10 citations found for Horita,

Search for Horita, in the World Directory of Crystallographers

Select bibliographic records for downloading using the checkboxes or select all button

Results 1 to 10, sorted by name:


Download citation
Acta Cryst. (2008). A64, C503
Download citation


Download citation
Download citation

link to html
A novel type of phosphoserine phosphatase from H. thermophilus TK-6 was heterologously expressed in E. coli, purified and crystallized by the sitting-drop vapour-diffusion method. The crystals obtained belonged to space group P212121 and diffracted X-rays to 1.5 Å resolution.

Download citation
Download citation

link to html
The putative sensor histidine kinase domain of the cytoplasmic protein HksP4 from the hyperthermophilic bacterium A. aeolicus VF5 was expressed, purified and crystallized by the sitting-drop vapour-diffusion method. Crystals were obtained in the presence of ATP and AMPPNP; they were found to belong to the same space group P212121 and diffracted X-rays to 3.1 and 2.9 Å resolution, respectively.


Download citation
Acta Cryst. (2014). A70, C304
Download citation

link to html
Post-translational modifications play diverse biological functions. Hydroxylation of collagen proteins has long been a recognised post-translational modification in eukaryotes. In the case of collagen, hydroxylation of prolyl residues, by 2-oxoglutarate and iron dependent enzymes (2OG oxygenases), in collagen proteins allows for the stabilisation of the collagen triple helix structure through conformational restraint and through the addition of a hydrogen bond donor. Additionally, hydroxylation of lysine side chains of collagen is required for cross-linking collagen (and possibly other proteins) in the extra-cellular matrix. Post-translational prolyl hydroxylation also plays a pivotal role in transcriptional regulation of the hypoxic response, as catalyzed by the hypoxia inducible factor / HIF prolyl hydroxylases (PHDs or EGLN enzymes). Recently, ribosomal protein hydroxylation catalyzed by 2OG- and Fe(II)-dependent oxygenases has been found to be a highly conserved post-translational modification in eukaryotes and prokaryotes (Ge et al and Loenarz et al). We present several crystal structures of 2OG oxygenases involved in ribosomal protein hydroxylation.

Download citation
Download citation

link to html
The C-terminal domain protein of the PB2 subunit of influenza A virus RNA-dependent RNA polymerase was expressed and crystallized and diffraction data were obtained from the crystals.

Download citation
Acta Cryst. (2014). A70, C465
Download citation

link to html
Oryctin is a 66-amino-acid protein purified from the larval haemolymph of the coconut rhinoceros beetle Oryctes rhinoceros, which shows no sequence similarity to any other protein known. We determined the solution NMR structure of oryctin, and found that oryctin had a similar backbone fold to the turkey ovomucoid domain 3, OMTKY3, a Kazal-type serine protease inhibitor [1]. Based on the structural similarity, we tested the serine protease inhibitory activity of oryctin, and found that oryctin does inhibit some serine proteases, such as [alpha]-chymotrypsin, endopeptidase K, subtilisin Carlsberg, and leukocyte elastase [1]. However, oryctin cannot inhibit trypsin at all. In this study, we have introduced point mutations to the putative inhibition loop of oryctin to obtain oryctin mutants that can inhibit trypsin. Then, we have solved the crystal structure of such an oryctin mutant, M14R-oryctin with a Ki value of 3.4 1 0.8 nM, in complex with trypsin to reveal how it binds to and inhibits trypsin. As predicted, the putative inhibition loop lay on the substrate binding cleft of trypsin. Particularly, the side chain of R14 fit into the S1 pocket of trypsin by forming hydrogen/ionic bonds with D191, S192 and G216 at the bottom of the S1 pocket and G195, D196, S197 and S212 at its entrance. In addition, R65 located in the C-terminal [alpha]-helix of M14R-oryctin formed hydrogen bonds with S40 and F44 of trypsin. The latter interaction, which is unique to oryctin, enhances its binding affinity to trypsin.

Download citation
Acta Cryst. (2010). A66, s136
Download citation


Download citation
Acta Cryst. (2014). A70, C483
Download citation

link to html
Iron is an essential element for the growth and survival of nearly all living organisms. However, it is difficult for most organisms to get enough iron from the environment, because of the extremely low solubility of ferric ion. One of the strategies for iron acquisition is to use the ATP-binding cassette (ABC) transport system. In Gram-negative bacteria, a typical iron uptake ABC transporter consists of a ferric ion-binding protein (Fbp) located in periplasm (FbpA), two transmembrane proteins that form a pathway for ferric ions (FbpB), and two peripheral ATP-binding proteins located at the cytoplasm side of the inner membrane (FbpC). TtFbpA is a ferric ion-binding protein of a putative iron uptake ABC transporter from Thermus thermophilus HB8. Here we report the crystal structures of the apo-form and ferric ion-bound form of TtFbpA at 1.8-Å and 1.7-Å resolutions, respectively [1]. The crystal structure of the ferric ion-bound TtFbpA shows that a ferric ion binds to a specific site of TtFbpA to form a six-coordinated complex by three tyrosine residues, two bicarbonates and a water molecule, revealing a novel mode of coordination to a ferric ion. Another crystal structure of ferric ion-bound TtFbpA reported earlier showed the bound ferric ion is five-coordinated by three tyrosine residues and a carbonate bound in the bidentate manner [2]. The different modes of the coordination would probably result from the different pHs used for crystallization: pH 5.5 (six-coordinated) vs. pH 7.5 (five-coordinated). The Gram negative bacterium T. thermophilus HB8 can live in a wide pH range of 3.4-9.6. We propose that TtFbpA, a periplasmic protein of T. thermophilus HB8, can act as a ferric ion-binding protein over the wide pH range by taking at least two different coordination manners to a ferric ion depending on pH. This is the first example of a periplasmic ferric iron-binding protein that can coordinate a ferric ion via multiple types of coordination complex formation.

Download citation
Download citation

link to html
Crystal structures of FbpA from T. thermophilus (TtFbpA) in its apo and ferric ion-bound forms have been solved. TtFbpA shows the novel formation of a six-coordinated complex of ferric ion coordinated by three tyrosine residues, two monodentate bicarbonates and a water molecule.

Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds