This is an archive copy of the IUCr web site dating from 2008. For current content please visit https://www.iucr.org.
[IUCr Home Page] [Commission Home Page]

next up previous
Next: 5. Discussion Up: Structural Phase Transition Nomenclature Report of Previous: 3. Six-field phase-transition nomenclature

Subsections


4. Examples

4.1. Barium titanate (BaTiO3) (Hewatt, 1974; Johnson, 1965) (see also Note added in proof)

6H $\vert \gt \,$1733 K $\vert$P63/mmc (194) $\vert$Z = 6 $\vert$non-ferroic $\vert$metastable at 300 K if cooled rapidly; stabilized by certain impurities.

I $\vert$1733-403 K $\vert$Pm$\bar 3$m (221) $\vert$Z = 1 $\vert$non-ferroic $\vert$Type = CaTiO3 idealized. May exist up to melting if phase 6H is not stabilized.

II $\vert$403-278 K $\vert$P4mm (99) $\vert$Z = 1 $\vert$ferroelectric, ferroelastic $\vert$6 ferroelectric, 3 ferroelastic variants.

III $\vert$278-183 K $\vert$Amm2 (38) $\vert$Z = 2 $\vert$ferroelectric, ferroelastic $\vert$12 ferroelectric, 6 ferroelastic variants.

IV $\vert$<$\,$183 K $\vert$R3m (160) $\vert$Z = 3 $\vert$ferroelectric, ferroelastic $\vert$8 ferroelectric, 4 ferroelastic variants.

4.2. Potassium tellurium bromide (K2TeBr6) Abrahams et al., 1984; Ihringer & Abrahams, 1984)

I $\vert \gt \,$434 K $\vert$Fm$\bar 3$m (225) $\vert$Z = 4 $\vert$non-ferroic $\vert$Type = K2PtCl6. Decomposes above $\sim$590 K.

II $\vert$434-400 K $\vert$P4/mnc (128) $\vert$Z = 2 $\vert$ferroelastic $\vert$3 variants.

III $\vert$< 400 K $\vert$P21/n (14) $\vert$Z = 2 $\vert$ferroelastic $\vert$12 variants.

4.3. Lead aluminium fluoride (Pb5Al3F19) (Andriamampianina et al., 1994; Sarraute et al., 1995, 1996; Omari et al., 1998)

I $\vert \gt
670~K \vert$I4/mcm (140) $\vert$Z = 4 $\vert$non-ferroic $\vert$structure not yet unambiguously determined.

II $\vert$670-360 K $\vert$I4/m (87) $\vert$Z = 4 $\vert$ferroic* $\vert$2 variants differing in elastic properties.

III $\vert$360-320 K $\vert$I2/c (15) $\vert$Z = 4 $\vert$ferroelastic $\vert$4 variants.

IV $\vert$320-270 K $\vert$P4/n (85) $\vert$Z = 8 $\vert$ferroic* $\vert$antiferroelectric. *As in phase II.

V $\vert$< 270 K $\vert$I4cm (108) $\vert$Z = 4 $\vert$ferroelectric $\vert$2 variants.

4.4. Lead niobate (PbNb2O6) (Roth, 1959, 1968; Labbé et al., 1977; Mahé, 1967)

I $\vert \gt \,$1423 K $\vert$tetragonal $\vert$- $\vert$nonferroic $\vert$metastable from 1423 to 873 K if cooled rapidly.

II $\vert$<$\,$873 K $\vert$Bb21m (36) $\vert$Z = 40 $\vert$ferroelectric $\vert$metastable at room temperature if cooled rapidly from > 1423 K.

III $\vert$<$\,$1423 K $\vert$R3m (160) $\vert$Z = 9 $\vert$non-ferroic $\vert$the stable phase at all temperatures below 1423 K.

4.5. Tellurium dioxide (TeO2) (Peercy & Fritz, 1974; Worlton & Beyerlein, 1975; Thomas, 1988)

$\alpha$ $\vert$<$\,$0.8 GPa $\vert$P41212 (92) $\vert$Z = 4 $\vert$non-ferroic $\vert$room temperature structure determination.

$\beta$ $\vert \gt \,$0.8 GPa $\vert$P21212 (19) $\vert$Z = 4 $\vert$ferroelastic $\vert$2 variants, room-temperature structure determined at 2 GPa.

4.6. Dicalcium silicate (Ca2SiO4) (Eysel & Hahn, 1970)

$\alpha$ $\vert$2400-1720 K $\vert$P63mc (186) or P63/mmc (194) $\vert$Z = 2 $\vert$non ferroic $\vert$Type = K2SO4 high. Stable.

$\alpha$$^\prime$-H $\vert$1720-1430 K $\vert$Pcmn (62) $\vert$Z = 4 $\vert$ferroelastic $\vert$Type = K2SO4 low. Stable.

$\alpha$$^\prime$-L $\vert$1430-950 K $\vert$Ccm21* (36) $\vert$Z = 16 $\vert$- $\vert$Type = K2SO4 low, slightly deformed. Stable. *Other space groups are possible.

$\beta$ $\vert$<$\,$950 K $\vert$P21/n (14) $\vert$Z = 4 $\vert$- $\vert$Type = K2SO4 low, strongly deformed. Metastable with respect to $\gamma$.

$\gamma$ $\vert$<$\,$1000 K $\vert$Pcmn (62) $\vert$Z = 4 $\vert$ - $\vert$Type = olivine. Stable.

4.7. Iron (Fe) (Donohue, 1974)

$\delta$$\vert \gt \,$1663 K $\vert$Im$\bar 3$m (229) $\vert$Z = 2 $\vert$non-ferroic $\vert$Type = W. Melting at 1808 K.

$\gamma$$\vert$1663-1183 K $\vert$Fm$\bar 3$m (225) $\vert$Z = 4 $\vert$non-ferroic $\vert$Type = Cu.

$\beta$ $\vert$1183-1043 K $\vert$Im$\bar 3$m (229) $\vert$Z = 2 $\vert$paramagnetic $\vert$Type = W.

$\alpha$$\vert$<$\,$1043 K $\vert$Im$\bar 3$m (229)* $\vert$Z = 2 $\vert$ferromagnetic $\vert$Type = W. *Magnetic structure is pseudocubic.

$\varepsilon$ $\vert \gt \,$13 GPa $\vert$P63/mmc (194) $\vert$Z = 2 $\vert$- $\vert$Type = Mg.

4.8. Yttrium (Y) (Grosshans et al., 1992)

- $\vert \gt \,$46 GPa $\vert$Fm$\bar 3$m (225) $\vert$Z = 4 $\vert$non-ferroic $\vert$Type = Cu.

- $\vert$46-26 GPa $\vert$P63/mmc (194) $\vert$Z = 4 $\vert$non-ferroic $\vert$Type = Nd $\alpha$.

- $\vert$26-12 GPa $\vert$R$\bar 3$m (166) $\vert$Z = 9 $\vert$- $\vert$Type = Sm $\alpha$.

- $\vert$<$\,$12 GPa $\vert$P63/mmc (194) $\vert$Z = 2 $\vert$- $\vert$Type = Mg.

4.9. Caesium boron tetrafluoride (CsBF4) (Richter & Pistorius 1971)

This example is chosen to illustrate a situation in which the phase diagram is an intricate function of temperature and pressure. The proposed notation specifies a rectangular (Tp) area for each phase, approximately superimposed on the actual range of the phase. Such a rough indication is generally insufficient to reconstruct, even approximately, the shape of the phase diagram. However, it provides the approximate stability range for the various phases and may be considered a first step in their identification. Only the three phases with identified crystal symmetries are listed below (labelled I, II, III in the published diagram) and only the first three fields of the nomenclature are entered:

I $\vert$900-670 K; <$\,$3 GPa $\vert$cubic $\vert$$\dots$

II $\vert$670-500 K; <$\,$0.8 GPa $\vert$cubic $\vert$$\dots$

III $\vert$500-270 K; <$\,$0.5 GPa $\vert$orthorhombic $\vert$$\dots$.


next up previous
Next: 5. Discussion Up: Structural Phase Transition Nomenclature Report of Previous: 3. Six-field phase-transition nomenclature

Copyright © 1998 International Union of Crystallography

IUCr Webmaster