Diffraction Limited Storage Rings – a window to the science of tomorrow
![]() |
Cover illustration: Artistic impression of the new MAX IV facility, currently under construction in Lund, Sweden, and one of a new generation of storage-ring-based synchrotron light sources employing a multibend achromat lattice to reach emittances in the few hundred pm rad range in a circumference of a few hundred metres. [Image courtesy of FOJAB arkitekter.] |
Progress is being made in improving accelerator technology, enabling a significant increase in brightness and coherent fraction of the X-ray light provided by storage rings. Two facilities will open shortly; MAX IV will open to users in 2016, SIRIUS soon thereafter. Many existing facilities are working on upgrades of their present machines based on these concepts, and entirely new machines are under consideration.
These developments cannot come soon enough, because higher brightness of the source will be of advantage for almost any experiment. This is not only the case for numerous X-ray microscopy applications but also if a small spot of the sample needs to be illuminated like in high-resolution X-ray spectroscopy or in experiments under high pressure in a tiny diamond anvil cell.
While diffraction limited storage rings (DLSRs) provide high average brightness, they cannot compete with Free Electron Lasers (FELs) as regards the peak brightness required for ultra-fast time resolution or single-shot experiments. This complementarity makes it attractive to locate a DLSR and a FEL on the same site. In this case a large number of scientific experiments can be conducted simultaneously on many beamlines at the DLSR, while specialized experiments can be scheduled for the FEL, at which only one or a few experiments can be conducted at a given time.
Exploitation of the full potential of a DLSR requires near-perfect optics, dedicated beamlines and sample environments, and specialized detectors. Together they can produce huge data rates (~10 GB/s) and data volumes (~10 TB/experiment) requiring dedicated infrastructure and specialized software that also allows non-expert synchrotron users to extract the relevant information within a realistic time.
Light sources are a tool to see the world around us and storage rings are nothing but light sources for the X-ray range. The significant improvement provided by the DLSRs under construction and in the design stage will enlighten our view of the world and allow science which is not possible, or not even thinkable, today.
We hope you enjoy this special issue and our glimpse into the science of tomorrow.
Mikael Eriksson, J. Friso van der Veen and Christoph Quitmann