News and notices

Determining the structures of complex biological molecules

di5005iIn the past decade there have been huge improvements in synchrotron sources, instrumentation at macromolecular crystallography (MX) beamlines, X-ray detectors, and data-processing and structure-determination software. These have led to an unprecedented increase in the number of structures determined.

These developments have also called for a revision of data-collection practice for single crystals. Hybrid photon-counting (HPC) pixel-array detectors have revolutionized data collection, both in terms of speed and in terms of quality. They offer several novel features including single-photon sensitivity, a sharp point-spread function of one pixel, millisecond and noise-free readout, and a high dynamic range. HPC pixel-array detectors can enable shutterless data collection, improving the data quality and reducing the data-acquisition time.

A recent paper by the MX group at the Swiss Light Source, published in Acta Cryst. D [Casanas et al., (2016), Acta Cryst. D72, 1036-1048; doi:10.1107/S2059798316012304] describes the best way of collecting macromolecular diffraction data with an EIGER HPC detector. In collaboration with DECTRIS, the group has integrated a DECTRIS EIGER and shown that it can be used to measure higher quality data than some earlier detectors. This has been enabled by features like the virtually continuous sensitivity of the detector for X-rays, only interrupted by microsecond breaks for the readout, enabling optimized data acquisition schemes at high speed and single photon accuracy.

The EIGER detector series is considered to represent the current state of the art of X-ray detectors for synchrotron and laboratory applications. Its development has widened the range of applications from high resolution data collection to experimental phasing and serial crystallography and allowed crystallographers to determine structures of more complex biological molecules, and this in turn can increase our understanding of their role in health and disease processes.