![[CIF logo]](https://www.iucr.org/__data/assets/image/0003/125499/CIF_v2.5.jpg)
Core dictionary version 3.0.14
_cell.orthogonal_matrix
Name:_cell.orthogonal_matrix
Definition:
Orthogonal matrix of the crystal unit cell. Definition uses Rollet's axial assignments with cell vectors a,b,c aligned with orthogonal axes X,Y,Z so that c||Z and b in plane YZ.
Type: Real
Values appear in Matrix context.
Dimension: [3,3]
Evaluation method:
With c as cell _cell.orthogonal_matrix = [ [ c.length_a*Sind(c.angle_beta)*Sind(c.reciprocal_angle_gamma), 0, 0 ], [ -c.length_a*Sind(c.angle_beta)*Cosd(c.reciprocal_angle_gamma), c.length_b*Sind(c.angle_alpha), 0 ], [ c.length_a*Cosd(c.angle_beta), c.length_b*Cosd(c.angle_alpha), c.length_c ]]
Category:
cell