Crystallographic Information Framework

CIF dictionary browser

CIF

Expanded view
View CIF syntax

CIF dictionary

Version 0.9.9 (2023-01-17)

The magnetic CIF dictionary is an extension to the core CIF dictionary. It defines datanames for describing magnetic structures.

Category tree view of data-item definitions

ATOM_SITE_FOURIER_WAVE_VECTOR
CIF
Data items in the ATOM_SITE_FOURIER_WAVE_VECTOR category record
details about the wave vectors of the Fourier terms used in the
structural model. This category is fully defined in the modulated
structures dictionary.
Examples:
loop_
        _cell_wave_vector_seq_id
        _cell_wave_vector_x
        _cell_wave_vector_y
        _cell_wave_vector_z
              1   0.30000   0.30000   0.00000
              2  -0.60000   0.30000   0.00000
    loop_
        _atom_site_Fourier_wave_vector_seq_id
        _atom_site_Fourier_wave_vector_x
        _atom_site_Fourier_wave_vector_y
        _atom_site_Fourier_wave_vector_z
        _atom_site_Fourier_wave_vector_q_coeff
            1   -0.30000   0.60000   0.00000  [1   1]
            2   -0.60000   0.30000   0.00000  [0   1]
            3   -0.30000  -0.30000   0.00000  [-1  0]
loop_
_cell_wave_vector_seq_id
_cell_wave_vector_x
_cell_wave_vector_y
_cell_wave_vector_z
  1   0.30000   0.30000   0.00000
  2  -0.60000   0.30000   0.00000
loop_
_atom_site_Fourier_wave_vector_seq_id
_atom_site_Fourier_wave_vector_x
_atom_site_Fourier_wave_vector_y
_atom_site_Fourier_wave_vector_z
_atom_site_Fourier_wave_vector_q1_coeff
_atom_site_Fourier_wave_vector_q2_coeff
1   -0.30000   0.60000   0.00000  1  1
2   -0.60000   0.30000   0.00000  0  1
3   -0.30000  -0.30000   0.00000 -1  0
save_atom_site_Fourier_wave_vector

_definition.id                          atom_site_Fourier_wave_vector
_name.object_id                         atom_site_Fourier_wave_vector
_name.category_id                       MS_GROUP
_definition.update                      2016-05-24
_description.text                       
;
               Data items in the ATOM_SITE_FOURIER_WAVE_VECTOR category record
               details about the wave vectors of the Fourier terms used in the
               structural model. This category is fully defined in the modulated
               structures dictionary.
;
_definition.scope                       Category
_definition.class                       Loop
loop_
  _description_example.case
  _description_example.detail
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
;
    loop_
        _cell_wave_vector_seq_id
        _cell_wave_vector_x
        _cell_wave_vector_y
        _cell_wave_vector_z
              1   0.30000   0.30000   0.00000
              2  -0.60000   0.30000   0.00000
    loop_
        _atom_site_Fourier_wave_vector_seq_id
        _atom_site_Fourier_wave_vector_x
        _atom_site_Fourier_wave_vector_y
        _atom_site_Fourier_wave_vector_z
        _atom_site_Fourier_wave_vector_q_coeff
            1   -0.30000   0.60000   0.00000  [1   1]
            2   -0.60000   0.30000   0.00000  [0   1]
            3   -0.30000  -0.30000   0.00000  [-1  0]
;
;
    Example 1 - Hypothetical example showing the modulation wave vector components
    expressed using the array data item _atom_site_Fourier_wave_vector_q_coeff.
;
;
loop_
_cell_wave_vector_seq_id
_cell_wave_vector_x
_cell_wave_vector_y
_cell_wave_vector_z
  1   0.30000   0.30000   0.00000
  2  -0.60000   0.30000   0.00000
loop_
_atom_site_Fourier_wave_vector_seq_id
_atom_site_Fourier_wave_vector_x
_atom_site_Fourier_wave_vector_y
_atom_site_Fourier_wave_vector_z
_atom_site_Fourier_wave_vector_q1_coeff
_atom_site_Fourier_wave_vector_q2_coeff
1   -0.30000   0.60000   0.00000  1  1
2   -0.60000   0.30000   0.00000  0  1
3   -0.30000  -0.30000   0.00000 -1  0
;
;
    Example 1 - As example 1, but using separate data items for each
    individual component of the modulation wave vector.
;
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
save_
_atom_site_Fourier_wave_vector.q1_coeff
CIF
For a given incommensurate modulation that contributes to the
structure, the wave vector of the modulation can be expressed as an
integer linear combination of the d independent wave vectors that
define the (3+d)-dimensional superspace.  The q1_coeff tag holds the
integer coefficient of the contribution of the first independent wave
vector, the q2_coeff tag holds the integer coefficient of the
contribution of the second independent wave vector, and so on.  At the
time of this writing, no examples with more than three independent
wave vectors are known, though there is no theoretical limit to the
number that could occur.  These tags are not explicitly magnetic; they
are equally applicable to any incommensurate modulation.
save__atom_site_Fourier_wave_vector.q1_coeff
_definition.id                         '_atom_site_Fourier_wave_vector.q1_coeff'
_name.category_id                       atom_site_Fourier_wave_vector
_name.object_id                         q1_coeff
loop_
  _alias.definition_id                 '_atom_site_Fourier_wave_vector_q1_coeff'
_definition.update                      2016-06-21
_description.text                       
;
    For a given incommensurate modulation that contributes to the
    structure, the wave vector of the modulation can be expressed as an
    integer linear combination of the d independent wave vectors that
    define the (3+d)-dimensional superspace.  The q1_coeff tag holds the
    integer coefficient of the contribution of the first independent wave
    vector, the q2_coeff tag holds the integer coefficient of the
    contribution of the second independent wave vector, and so on.  At the
    time of this writing, no examples with more than three independent
    wave vectors are known, though there is no theoretical limit to the
    number that could occur.  These tags are not explicitly magnetic; they
    are equally applicable to any incommensurate modulation.
;
_type.contents                          Integer
_type.container                         Single
loop_
  _method.purpose
  _method.expression
  Evaluation
;
    with a as atom_site_Fourier_wave_vector
    a.q1_coeff = a.q_coeff[0]
;
save_
_atom_site_Fourier_wave_vector.q2_coeff
CIF
For a given incommensurate modulation that contributes to the
structure, the wave vector of the modulation can be expressed as an
integer linear combination of the d independent wave vectors that
define the (3+d)-dimensional superspace.  The q1_coeff tag holds the
integer coefficient of the contribution of the first independent wave
vector, the q2_coeff tag holds the integer coefficient of the
contribution of the second independent wave vector, and so on.  At the
time of this writing, no examples with more than three independent
wave vectors are known, though there is no theoretical limit to the
number that could occur.  These tags are not explicitly magnetic; they
are equally applicable to any incommensurate modulation.
save__atom_site_Fourier_wave_vector.q2_coeff
_definition.id                         '_atom_site_Fourier_wave_vector.q2_coeff'
_name.category_id                       atom_site_Fourier_wave_vector
_name.object_id                         q2_coeff
loop_
  _alias.definition_id                 '_atom_site_Fourier_wave_vector_q2_coeff'
_definition.update                      2016-06-21
_description.text                       
;
    For a given incommensurate modulation that contributes to the
    structure, the wave vector of the modulation can be expressed as an
    integer linear combination of the d independent wave vectors that
    define the (3+d)-dimensional superspace.  The q1_coeff tag holds the
    integer coefficient of the contribution of the first independent wave
    vector, the q2_coeff tag holds the integer coefficient of the
    contribution of the second independent wave vector, and so on.  At the
    time of this writing, no examples with more than three independent
    wave vectors are known, though there is no theoretical limit to the
    number that could occur.  These tags are not explicitly magnetic; they
    are equally applicable to any incommensurate modulation.
;
_type.contents                          Integer
_type.container                         Single
loop_
  _method.purpose
  _method.expression
  Evaluation
;
    with a as atom_site_Fourier_wave_vector
    a.q2_coeff = a.q_coeff[1]
;

save_
_atom_site_Fourier_wave_vector.q3_coeff
CIF
For a given incommensurate modulation that contributes to the
structure, the wave vector of the modulation can be expressed as an
integer linear combination of the d independent wave vectors that
define the (3+d)-dimensional superspace.  The q1_coeff tag holds the
integer coefficient of the contribution of the first independent wave
vector, the q2_coeff tag holds the integer coefficient of the
contribution of the second independent wave vector, and so on.  At the
time of this writing, no examples with more than three independent
wave vectors are known, though there is no theoretical limit to the
number that could occur.  These tags are not explicitly magnetic; they
are equally applicable to any incommensurate modulation.
save__atom_site_Fourier_wave_vector.q3_coeff
_definition.id                         '_atom_site_Fourier_wave_vector.q3_coeff'
_name.category_id                       atom_site_Fourier_wave_vector
_name.object_id                         q3_coeff
loop_
  _alias.definition_id                 '_atom_site_Fourier_wave_vector_q3_coeff'
_definition.update                      2016-06-21
_description.text                       
;
    For a given incommensurate modulation that contributes to the
    structure, the wave vector of the modulation can be expressed as an
    integer linear combination of the d independent wave vectors that
    define the (3+d)-dimensional superspace.  The q1_coeff tag holds the
    integer coefficient of the contribution of the first independent wave
    vector, the q2_coeff tag holds the integer coefficient of the
    contribution of the second independent wave vector, and so on.  At the
    time of this writing, no examples with more than three independent
    wave vectors are known, though there is no theoretical limit to the
    number that could occur.  These tags are not explicitly magnetic; they
    are equally applicable to any incommensurate modulation.
;
_type.contents                          Integer
_type.container                         Single
save_
_atom_site_Fourier_wave_vector.q_coeff
CIF
For a given incommensurate modulation that contributes to the
structure, the wave vector of the modulation can be expressed as an
integer linear combination of the d independent wave vectors that
define the (3+d)-dimensional superspace.  This tag holds each of
the integer coefficients as an array. At the
time of this writing, no examples with more than three independent
wave vectors are known, though there is no theoretical limit to the
number that could occur.  These tags are not explicitly magnetic; they
are equally applicable to any incommensurate modulation.
save__atom_site_Fourier_wave_vector.q_coeff

_definition.id                          '_atom_site_Fourier_wave_vector.q_coeff'
_name.category_id                       atom_site_Fourier_wave_vector
_name.object_id                         q_coeff
loop_
  _alias.definition_id                  '_atom_site_Fourier_wave_vector_q_coeff'
_definition.update                      2016-06-21
_description.text                       
;
    For a given incommensurate modulation that contributes to the
    structure, the wave vector of the modulation can be expressed as an
    integer linear combination of the d independent wave vectors that
    define the (3+d)-dimensional superspace.  This tag holds each of
    the integer coefficients as an array. At the
    time of this writing, no examples with more than three independent
    wave vectors are known, though there is no theoretical limit to the
    number that could occur.  These tags are not explicitly magnetic; they
    are equally applicable to any incommensurate modulation.
;
_type.contents                          Integer
_type.container                         Array
_type.dimension                         []
save_
ATOM_SITE_MOMENT
CIF
This category provides a loop for presenting the magnetic moments
of atoms in one of several coordinate systems.  This is a child
category of the ATOM_SITE category, so that the magnetic moments
can either be listed alongside the non-magnetic atom properties
in the main ATOM_SITE loop, or be listed in a separate loop.
save_atom_site_moment

_definition.id                          atom_site_moment
_name.category_id                       atom_site
_name.object_id                         atom_site_moment
_definition.update                      2016-05-24
_description.text                       
;
     This category provides a loop for presenting the magnetic moments
     of atoms in one of several coordinate systems.  This is a child
     category of the ATOM_SITE category, so that the magnetic moments
     can either be listed alongside the non-magnetic atom properties
     in the main ATOM_SITE loop, or be listed in a separate loop.
;
_definition.scope                       Category
_definition.class                       Loop
loop_
    _category_key.name                  '_atom_site_moment.label'

save_
_atom_site_moment.Cartn
CIF
The atom-site magnetic moment vector specified according to a set
of orthogonal Cartesian axes where x||a and z||c* with y
completing a right-hand set.
save__atom_site_moment.Cartn

_definition.id                          '_atom_site_moment.Cartn'
_name.category_id                       atom_site_moment
_name.object_id                         Cartn
loop_
  _alias.definition_id
  '_atom_site_moment_Cartn'

_definition.update                      2016-05-24
_description.text                       
;
     The atom-site magnetic moment vector specified according to a set
     of orthogonal Cartesian axes where x||a and z||c* with y
     completing a right-hand set.
;
_type.contents                          Real
_type.dimension                         [3]
_type.container                         Matrix
_type.purpose                           Measurand
_units.code                             Bohr_magnetons
loop_
  _method.purpose
  _method.expression
         Evaluation          
;
    with a as atom_site_moment
    a.Cartn = [a.Cartn_x,a.Cartn_y,a.Cartn_z]

;

save_
_atom_site_moment.Cartn_x
CIF
The x component of the atom-site magnetic moment vector
(see _atom_site_moment.Cartn).
save__atom_site_moment.Cartn_x

_definition.id                          '_atom_site_moment.Cartn_x'
_name.category_id                       atom_site_moment
_name.object_id                         Cartn_x
loop_
  _alias.definition_id                  '_atom_site_moment_Cartn_x'
_definition.update                      2016-05-24
_type.contents                          Real
_type.container                         Single
_type.purpose                           Measurand
_description.text                       
;
     The x component of the atom-site magnetic moment vector
     (see _atom_site_moment.Cartn).
;
_units.code                             Bohr_magnetons

save_
_atom_site_moment.Cartn_y
CIF
The y component of the atom-site magnetic moment vector
(see _atom_site_moment.Cartn).
save__atom_site_moment.Cartn_y

_definition.id                          '_atom_site_moment.Cartn_y'
_name.category_id                       atom_site_moment
_name.object_id                         Cartn_y
loop_
  _alias.definition_id                  '_atom_site_moment_Cartn_y'
_definition.update                      2016-05-24
_type.contents                          Real
_type.container                         Single
_type.purpose                           Measurand
_description.text                       
;
     The y component of the atom-site magnetic moment vector
     (see _atom_site_moment.Cartn).

;
_units.code                             Bohr_magnetons

save_
_atom_site_moment.Cartn_z
CIF
The z component of the atom-site magnetic moment vector
(see _atom_site_moment.Cartn).
save__atom_site_moment.Cartn_z

_definition.id                          '_atom_site_moment.Cartn_z'
_name.category_id                       atom_site_moment
_name.object_id                         Cartn_z
loop_
  _alias.definition_id                  '_atom_site_moment_Cartn_z'
_definition.update                      2016-05-24
_type.contents                          Real
_type.container                         Single
_type.purpose                           Measurand
_description.text                       
;
     The z component of the atom-site magnetic moment vector
     (see _atom_site_moment.Cartn).

;
_units.code                             Bohr_magnetons

save_
_atom_site_moment.crystalaxis
CIF
The atom-site magnetic moment vector specified using components
parallel to each of the unit cell axes.  This is the recommended
coordinate system for  most magnetic structures.
save__atom_site_moment.crystalaxis

_definition.id                          '_atom_site_moment.crystalaxis'
_name.category_id                       atom_site_moment
_name.object_id                         crystalaxis
loop_
  _alias.definition_id                  '_atom_site_moment_crystalaxis'
_definition.update                      2016-05-24
_description.text                       
;
     The atom-site magnetic moment vector specified using components 
     parallel to each of the unit cell axes.  This is the recommended
     coordinate system for  most magnetic structures.
;
_type.contents                          Real
_type.container                         Matrix
_type.dimension                         [3]
_type.purpose                           Measurand
_units.code                             Bohr_magnetons
loop_
  _method.purpose
  _method.expression
         Evaluation          
;
    with a as atom_site_moment
    a.crystalaxis = [a.crystalaxis_x,a.crystalaxis_y,a.crystalaxis_z]

; 

save_
_atom_site_moment.crystalaxis_x
CIF
The component of the atom-site magnetic-moment vector parallel to the first
unit-cell axis.  See _atom_site_moment.crystalaxis.
save__atom_site_moment.crystalaxis_x

_definition.id                          '_atom_site_moment.crystalaxis_x'
_name.category_id                       atom_site_moment
_name.object_id                         crystalaxis_x
loop_
  _alias.definition_id                  '_atom_site_moment_crystalaxis_x'
_definition.update                      2016-05-24
_type.contents                          Real
_type.container                         Single
_type.purpose                           Measurand
_description.text                       
;
     The component of the atom-site magnetic-moment vector parallel to the first 
     unit-cell axis.  See _atom_site_moment.crystalaxis.
;
_units.code                             Bohr_magnetons

save_
_atom_site_moment.crystalaxis_y
CIF
The component of the atom-site magnetic-moment vector parallel to the second
unit-cell axis.  See _atom_site_moment.crystalaxis.
save__atom_site_moment.crystalaxis_y

_definition.id                          '_atom_site_moment.crystalaxis_y'
_name.category_id                       atom_site_moment
_name.object_id                         crystalaxis_y
loop_
  _alias.definition_id                  '_atom_site_moment_crystalaxis_y'
_definition.update                      2016-05-24
_type.contents                          Real
_type.container                         Single
_type.purpose                           Measurand
_description.text                       
;
     The component of the atom-site magnetic-moment vector parallel to the second
     unit-cell axis.  See _atom_site_moment.crystalaxis.
;
_units.code                             Bohr_magnetons

save_
_atom_site_moment.crystalaxis_z
CIF
The component of the atom-site magnetic-moment vector parallel to the third
unit-cell axis.  See _atom_site_moment.crystalaxis.
save__atom_site_moment.crystalaxis_z

_definition.id                          '_atom_site_moment.crystalaxis_z'
_name.category_id                       atom_site_moment
_name.object_id                         crystalaxis_z
loop_
  _alias.definition_id                  '_atom_site_moment_crystalaxis_z'
_definition.update                      2016-05-24
_type.contents                          Real
_type.container                         Single
_type.purpose                           Measurand
_description.text                       
;
     The component of the atom-site magnetic-moment vector parallel to the third
     unit-cell axis.  See _atom_site_moment.crystalaxis.
;
_units.code                             Bohr_magnetons

save_
_atom_site_moment.label
CIF
This label is a unique identifier for a particular site in the
asymmetric unit of the crystal unit cell.
save__atom_site_moment.label

_definition.id                          '_atom_site_moment.label'
_name.category_id                       atom_site_moment
_name.object_id                         label
loop_
  _alias.definition_id                  '_atom_site_moment_label'


    _definition.update           2021-10-25
    _description.text
;
     This label is a unique identifier for a particular site in the
     asymmetric unit of the crystal unit cell.
;
    _name.linked_item_id       '_atom_site.label'
    _type.purpose                Link
    _type.source                 Assigned
    _type.container              Single
    _type.contents               Word
     
# Following have been imported above:
#_import.get [{"save":atom_site_id "file":templ_attr.cif}]
_definition.update                      2016-05-24

save_
_atom_site_moment.magnitude
CIF
The magnitude of a magnetic moment vector.
save__atom_site_moment.magnitude

_definition.id                          '_atom_site_moment.magnitude'
_name.category_id                       atom_site_moment
_name.object_id                         magnitude
loop_
  _alias.definition_id                  '_atom_site_moment_magnitude'
_definition.update                      2018-07-18
_type.contents                          Real
_type.container                         Single
_type.purpose                           Measurand
_description.text                       
;
     The magnitude of a magnetic moment vector.
;
_units.code                             Bohr_magnetons
save_
_atom_site_moment.modulation_flag
CIF
A code that signals whether the structural model includes the
modulation of the magnetic moment of a given atom site.
save__atom_site_moment.modulation_flag

_definition.id                          '_atom_site_moment.modulation_flag'
_name.category_id                       atom_site_moment
_name.object_id                         modulation_flag
loop_
  _alias.definition_id                  '_atom_site_moment_modulation_flag'
_definition.update                      2016-05-24
_description.text                       
;
     A code that signals whether the structural model includes the
     modulation of the magnetic moment of a given atom site.
;
_type.contents                          Code
_type.container                         Single
loop_
  _enumeration_set.state
  _enumeration_set.detail
   'yes'            'magnetic modulation'
   'y'              'abbreviation for "yes"'
   'no'             'no magnetic modulation'
   'n'              'abbreviation for "no"'

save_
_atom_site_moment.refinement_flags_magnetic
CIF
The constraints/restraints placed on the magnetic moment during
model refinement.
save__atom_site_moment.refinement_flags_magnetic

_definition.id                     '_atom_site_moment.refinement_flags_magnetic'
_name.category_id                       atom_site_moment
_name.object_id                         refinement_flags_magnetic
loop_
  _alias.definition_id             '_atom_site_moment_refinement_flags_magnetic'
_definition.update                      2016-05-24
_type.container                         Single
_type.purpose                           State
_description.text                       
;
    The constraints/restraints placed on the magnetic moment during
    model refinement.
;
_type.contents                          Code
loop_
  _enumeration_set.state
  _enumeration_set.detail
         .         'no constraint on magnetic moment'      
         S         'special position constraint on magnetic moment'  
         M         'modulus restraint on magnetic moment'  
         A         'direction restraints on magnetic moment'         
         SM        'superposition of S and M constraints/restraints'           
         SA        'superposition of S and A constraints/restraints'           
         MA        'superposition of M and A constraints/restraints'           
         SMA       'superposition of S, M and A constraints/restraints' 

save_
_atom_site_moment.spherical_azimuthal
CIF
The azimuthal angle of the atom-site magnetic moment vector
specified in spherical coordinates relative to a set of
orthogonal Cartesian axes where x||a and z||c* with y completing
a right-hand set.  The azimuthal angle is a right-handed rotation
around the +z axis starting from the +x side of the x-z plane.
save__atom_site_moment.spherical_azimuthal

_definition.id                          '_atom_site_moment.spherical_azimuthal'
_name.category_id                       atom_site_moment
_name.object_id                         spherical_azimuthal
loop_
  _alias.definition_id                  '_atom_site_moment_spherical_azimuthal'
_definition.update                      2016-05-24
_enumeration.range                      0.0:6.2831854
_units.code                             radians
_description.text                       
;
     The azimuthal angle of the atom-site magnetic moment vector
     specified in spherical coordinates relative to a set of
     orthogonal Cartesian axes where x||a and z||c* with y completing
     a right-hand set.  The azimuthal angle is a right-handed rotation
     around the +z axis starting from the +x side of the x-z plane.
;
_type.contents                          Real
_type.container                         Single
_type.purpose                           Measurand

save_
_atom_site_moment.spherical_modulus
CIF
The modulus of the atom-site magnetic moment vector specified in
spherical coordinates relative to a set of orthogonal Cartesian
axes where x||a and z||c* with y completing a right-hand set.
save__atom_site_moment.spherical_modulus

_definition.id                          '_atom_site_moment.spherical_modulus'
_name.category_id                       atom_site_moment
_name.object_id                         spherical_modulus
loop_
  _alias.definition_id                  '_atom_site_moment_spherical_modulus'
_definition.update                      2016-05-24
_units.code                             Bohr_magnetons
_description.text                       
;
     The modulus of the atom-site magnetic moment vector specified in
     spherical coordinates relative to a set of orthogonal Cartesian
     axes where x||a and z||c* with y completing a right-hand set.
;
_type.contents                          Real
_type.container                         Single
_type.purpose                           Measurand
save_
_atom_site_moment.spherical_polar
CIF
The polar angle of the atom-site magnetic moment vector specified
in spherical coordinates relative to a set of orthogonal
Cartesian axes where x||a and z||c* with y completing a
right-hand set. The polar angle is measured relative to the +z axis.
save__atom_site_moment.spherical_polar

_definition.id                          '_atom_site_moment.spherical_polar'
_name.category_id                       atom_site_moment
_name.object_id                         spherical_polar
loop_
  _alias.definition_id                  '_atom_site_moment_spherical_polar'
_definition.update                      2016-05-24
_enumeration.range                      0.0:3.1415927
_units.code                             radians
_description.text                       
;
     The polar angle of the atom-site magnetic moment vector specified
     in spherical coordinates relative to a set of orthogonal
     Cartesian axes where x||a and z||c* with y completing a
     right-hand set. The polar angle is measured relative to the +z axis.
;
_type.contents                          Real
_type.container                         Single
_type.purpose                           Measurand

save_
_atom_site_moment.symmform
CIF
A symbolic expression that indicates the symmetry-restricted form
of the components of  the magnetic moment vector of the atom.
Unlike the positional coordinates of an atom, its magnetic moment
has no translational component to be represented.
Examples:
mx,my,mz
mx,-mx,0
mx,0,mz
save__atom_site_moment.symmform

_definition.id                          '_atom_site_moment.symmform'
_name.category_id                       atom_site_moment
_name.object_id                         symmform
loop_
  _alias.definition_id                  '_atom_site_moment_symmform'
_definition.update                      2016-05-24
_description.text                       
;
     A symbolic expression that indicates the symmetry-restricted form
     of the components of  the magnetic moment vector of the atom.
     Unlike the positional coordinates of an atom, its magnetic moment
     has no translational component to be represented.
;
_type.contents                          Text
_type.container                         Single
loop_
  _description_example.case
  _description_example.detail
         'mx,my,mz'          'no symmetry restrictions'     
         'mx,-mx,0'
;                             y component equal and opposite to x component
                              with z component zero
;
         'mx,0,mz'           'y component zero'

save_
ATOM_SITE_MOMENT_FOURIER
CIF
Data items in the ATOM_SITE_MOMENT_FOURIER category record
details about the Fourier components of the magnetic modulation
of an atom site in a modulated structure. The (in general
complex) coefficients of each Fourier component belong to the
child category ATOM_SITE_MOMENT_FOURIER_PARAM, which may be
listed separately.
save_atom_site_moment_Fourier

_definition.id                          atom_site_moment_Fourier
_name.category_id                       MAGNETIC
_name.object_id                         atom_site_moment_Fourier
_definition.update                      2016-05-24
_description.text                       
;
     Data items in the ATOM_SITE_MOMENT_FOURIER category record
     details about the Fourier components of the magnetic modulation
     of an atom site in a modulated structure. The (in general
     complex) coefficients of each Fourier component belong to the
     child category ATOM_SITE_MOMENT_FOURIER_PARAM, which may be
     listed separately.
;
_definition.scope                       Category
_definition.class                       Loop
_category.key_id                        '_atom_site_moment_Fourier.id'
loop_
    _category_key.name
        '_atom_site_moment_Fourier.id'
save_
_atom_site_moment_Fourier.atom_site_label
CIF
This string uniquely identifies the atom for which the Fourier
modulation  components are to be specified.  The Fourier
modulation components are always presented in a separate loop
(not in the ATOM_SITE loop).  This string must match an
_atom_site.label from the ATOM_SITE loop, and otherwise conform
to the rules for _atom_site_label.
save__atom_site_moment_Fourier.atom_site_label

_definition.id                       '_atom_site_moment_Fourier.atom_site_label'
_name.category_id                       atom_site_moment_Fourier
_name.object_id                         atom_site_label
_definition.update                      2016-05-24

_description.text                       
;
     This string uniquely identifies the atom for which the Fourier
     modulation  components are to be specified.  The Fourier
     modulation components are always presented in a separate loop
     (not in the ATOM_SITE loop).  This string must match an
     _atom_site.label from the ATOM_SITE loop, and otherwise conform
     to the rules for _atom_site_label.
;
_type.contents                          Code
_type.container                         Single
_type.purpose                           Encode
_type.source                            Assigned
_name.linked_item_id                    '_atom_site_moment.label'

save_
_atom_site_moment_Fourier.axis
CIF
Specifies the coordinate system in which the Fourier modulation
components are to be presented and an axis in that coordinate
system.
Analogous tags: msCIF:_atom_site_displace_Fourier.axis,
msCIF:_atom_site_rot_Fourier.axis,
msCIF:_atom_site_U_Fourier.tens_elem
save__atom_site_moment_Fourier.axis

_definition.id                          '_atom_site_moment_Fourier.axis'
_name.category_id                       atom_site_moment_Fourier
_name.object_id                         axis
_definition.update                      2016-05-24
_description.text                       
;
     Specifies the coordinate system in which the Fourier modulation
     components are to be presented and an axis in that coordinate
     system.

     Analogous tags: msCIF:_atom_site_displace_Fourier.axis,
     msCIF:_atom_site_rot_Fourier.axis,
     msCIF:_atom_site_U_Fourier.tens_elem
;
_type.contents                          Code
_type.container                         Single
_type.source                            Assigned
_type.purpose                           State
loop_
  _enumeration_set.state
  _enumeration_set.detail
         Cx        'Cartesian x coordinate'      
         Cy        'Cartesian y coordinate'      
         Cz        'Cartesian z coordinate'      
         x         'crystal a-axis coordinate'      
         y         'crystal b-axis coordinate'      
         z         'crystal c-axis coordinate'      
         mod       'length part of spherical coordinate'   
         pol       'polar angle in spherical coordinates'  
         azi       'azimuthal angle in spherical coordinates'        
         a1        'user-defined coordinate 1'   
         a2        'user-defined coordinate 2'   
         a3        'user-defined coordinate 3' 

save_
_atom_site_moment_Fourier.id
CIF
An arbitrary code that uniquely identifies each of the components
of each of the magnetic Fourier modulations of each of the atoms
in the structure.  It will typically include an atom name, a
wave-vector id, and a coordinate axis. A sequence of positive
integers could also be used.
Examples:
K2_1_z
Se1_2_x
save__atom_site_moment_Fourier.id

_definition.id                          '_atom_site_moment_Fourier.id'
_name.category_id                       atom_site_moment_Fourier
_name.object_id                         id
_definition.update                      2016-05-24

_description.text                       
;
     An arbitrary code that uniquely identifies each of the components
     of each of the magnetic Fourier modulations of each of the atoms
     in the structure.  It will typically include an atom name, a
     wave-vector id, and a coordinate axis. A sequence of positive
     integers could also be used.
;
_type.contents                          Text
_type.container                         Single
_type.purpose                           Key
loop_
  _description_example.case
         K2_1_z    
         Se1_2_x 

save_
_atom_site_moment_Fourier.wave_vector_seq_id
CIF
An arbitrary code that uniquely identifies the wave vector for
which magnetic Fourier modulation components are to be described
within the ATOM_SITE_MOMENT_FOURIER loop.  It must match one of
the _atom_site_Fourier_wave_vector.seq_id values in the
ATOM_SITE_FOURIER_WAVE_VECTOR loop.
Analogous tags:
msCIF:_atom_site_displace_Fourier_wave_vector.seq_id,
msCIF:_atom_site_rot_Fourier_wave_vector.seq_id,
msCIF:_atom_site_occ_Fourier_wave_vector.seq_id,
msCIF:_atom_site_U_Fourier_wave_vector.seq_id
save__atom_site_moment_Fourier.wave_vector_seq_id

_definition.id                    '_atom_site_moment_Fourier.wave_vector_seq_id'
_name.category_id                       atom_site_moment_Fourier
_name.object_id                         wave_vector_seq_id
_definition.update                      2016-05-24

_description.text                       
;
     An arbitrary code that uniquely identifies the wave vector for
     which magnetic Fourier modulation components are to be described
     within the ATOM_SITE_MOMENT_FOURIER loop.  It must match one of
     the _atom_site_Fourier_wave_vector.seq_id values in the
     ATOM_SITE_FOURIER_WAVE_VECTOR loop.

     Analogous tags:
     msCIF:_atom_site_displace_Fourier_wave_vector.seq_id,
     msCIF:_atom_site_rot_Fourier_wave_vector.seq_id,
     msCIF:_atom_site_occ_Fourier_wave_vector.seq_id,
     msCIF:_atom_site_U_Fourier_wave_vector.seq_id
;
_type.contents                          Text
_type.container                         Single

save_
ATOM_SITE_MOMENT_FOURIER_PARAM
CIF
Data items in this category record details about the
coefficients of the Fourier series used to describe the  magnetic
modulation of an atom. This is a child category of  the
ATOM_SITE_MOMENT_FOURIER category; so that magnetic Fourier
components can either be listed within the
ATOM_SITE_MOMENT_FOURIER loop, or else listed in a separate
loop.
Analogous tags: _atom_site_displace_Fourier_param.*,
_atom_site_rot_Fourier_param.*,
_atom_site_occ_Fourier_param.*,
_atom_site_U_Fourier_param.*
Example:
loop_
        _cell_wave_vector_seq_id
        _cell_wave_vector_x
        _cell_wave_vector_y
        _cell_wave_vector_z
              1   0.30000   0.30000   0.00000
              2  -0.60000   0.30000   0.00000
    loop_
        _atom_site_Fourier_wave_vector_seq_id
        _atom_site_Fourier_wave_vector_x
        _atom_site_Fourier_wave_vector_y
        _atom_site_Fourier_wave_vector_z
        _atom_site_Fourier_wave_vector_q1_coeff
        _atom_site_Fourier_wave_vector_q2_coeff
            1   -0.30000   0.60000   0.00000  1  1
            2   -0.60000   0.30000   0.00000  0  1
            3   -0.30000  -0.30000   0.00000 -1  0
    loop_
        _atom_site_moment_Fourier.id
        _atom_site_moment_Fourier.atom_site_label
        _atom_site_moment_Fourier.wave_vector_seq_id
        _atom_site_moment_Fourier.axis
        _atom_site_moment_Fourier_param.cos
        _atom_site_moment_Fourier_param.sin
        _atom_site_moment_Fourier_param.cos_symmform
        _atom_site_moment_Fourier_param.sin_symmform
            1  Fe_1 1 x  0.00000  0.84852  0            mxs
            2  Fe_1 1 y  0.00000  0.42426  0     0.50000*mxs
            3  Fe_1 1 z  0.00000  0.00000  0            0
            4  Fe_1 2 x  0.00000 -0.42426  0    -0.50000*mxs
            5  Fe_1 2 y  0.00000 -0.84852  0           -mxs
            6  Fe_1 2 z  0.00000  0.00000  0            0
            7  Fe_1 3 x -0.42426  0.00000 -0.50000*mxs  0
            8  Fe_1 3 y  0.42426  0.00000  0.50000*mxs  0
            9  Fe_1 3 z  0.00000  0.00000  0            0
save_atom_site_moment_Fourier_param

_definition.id                          atom_site_moment_Fourier_param
_name.category_id                       atom_site_moment_Fourier
_name.object_id                         atom_site_moment_Fourier_param
_definition.update                      2016-05-24
_description.text                       
;
     Data items in this category record details about the
     coefficients of the Fourier series used to describe the  magnetic
     modulation of an atom. This is a child category of  the
     ATOM_SITE_MOMENT_FOURIER category; so that magnetic Fourier
     components can either be listed within the
     ATOM_SITE_MOMENT_FOURIER loop, or else listed in a separate
     loop.

     Analogous tags: _atom_site_displace_Fourier_param.*,
     _atom_site_rot_Fourier_param.*,
     _atom_site_occ_Fourier_param.*,
     _atom_site_U_Fourier_param.*
;
_definition.scope                       Category
_definition.class                       Loop
_category.key_id                        '_atom_site_moment_Fourier_param.id'
loop_
    _category_key.name
       '_atom_site_moment_Fourier_param.id'
loop_
  _description_example.case
  _description_example.detail
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
;
    loop_
        _cell_wave_vector_seq_id
        _cell_wave_vector_x
        _cell_wave_vector_y
        _cell_wave_vector_z
              1   0.30000   0.30000   0.00000
              2  -0.60000   0.30000   0.00000
    loop_
        _atom_site_Fourier_wave_vector_seq_id
        _atom_site_Fourier_wave_vector_x
        _atom_site_Fourier_wave_vector_y
        _atom_site_Fourier_wave_vector_z
        _atom_site_Fourier_wave_vector_q1_coeff
        _atom_site_Fourier_wave_vector_q2_coeff
            1   -0.30000   0.60000   0.00000  1  1
            2   -0.60000   0.30000   0.00000  0  1
            3   -0.30000  -0.30000   0.00000 -1  0
    loop_
        _atom_site_moment_Fourier.id
        _atom_site_moment_Fourier.atom_site_label
        _atom_site_moment_Fourier.wave_vector_seq_id
        _atom_site_moment_Fourier.axis
        _atom_site_moment_Fourier_param.cos
        _atom_site_moment_Fourier_param.sin
        _atom_site_moment_Fourier_param.cos_symmform
        _atom_site_moment_Fourier_param.sin_symmform
            1  Fe_1 1 x  0.00000  0.84852  0            mxs
            2  Fe_1 1 y  0.00000  0.42426  0     0.50000*mxs
            3  Fe_1 1 z  0.00000  0.00000  0            0
            4  Fe_1 2 x  0.00000 -0.42426  0    -0.50000*mxs
            5  Fe_1 2 y  0.00000 -0.84852  0           -mxs
            6  Fe_1 2 z  0.00000  0.00000  0            0
            7  Fe_1 3 x -0.42426  0.00000 -0.50000*mxs  0
            8  Fe_1 3 y  0.42426  0.00000  0.50000*mxs  0
            9  Fe_1 3 z  0.00000  0.00000  0            0
;
;
    Example 1 - Hypothetical example showing the symmetry-restricted form
                of cosine and sine components of the modulation vector
                for a specific Wyckoff site.
;
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
save_
_atom_site_moment_Fourier_param.cos
CIF
The cosine component of the magnetic Fourier modulation of a
specific atom, wave vector and coordinate axis.  It is always
used together with the sine component, but not with the modulus
or phase components.
Analogous tags: msCIF:_atom_site_displace_Fourier_param.cos,
msCIF:_atom_site_rot_Fourier_param.cos,
msCIF:_atom_site_occ_Fourier_param.cos,
msCIF:_atom_site_U_Fourier_param.cos
Also see the technical descriptions of the analogous tags.
save__atom_site_moment_Fourier_param.cos

_definition.id                          '_atom_site_moment_Fourier_param.cos'
_name.category_id                       atom_site_moment_Fourier_param
_name.object_id                         cos
loop_
  _alias.definition_id                  '_atom_site_moment_Fourier_param_cos'
_definition.update                      2016-05-24
_units.code                             Bohr_magnetons
_description.text                       
;
     The cosine component of the magnetic Fourier modulation of a
     specific atom, wave vector and coordinate axis.  It is always
     used together with the sine component, but not with the modulus
     or phase components.

     Analogous tags: msCIF:_atom_site_displace_Fourier_param.cos,
     msCIF:_atom_site_rot_Fourier_param.cos,
     msCIF:_atom_site_occ_Fourier_param.cos,
     msCIF:_atom_site_U_Fourier_param.cos
     Also see the technical descriptions of the analogous tags.
;
_type.contents                          Real
_type.container                         Single
_type.purpose                           Measurand

save_
_atom_site_moment_Fourier_param.cos_symmform
CIF
A symbolic expression that indicates the symmetry-restricted form of
this  modulation component for the affected Wyckoff site.  The
expression can include a zero, a symbol, or a symbol
multiplied ('*') by a numerical prefactor. An allowed symbol is a
string that contains the following parts.  (1) The 1st character
is "m" for magnetic. (2) The 2nd character is one of "x", "y", or
"z", to indicate the magnetic component to be modulated. (3) The
3rd character is one of "m" for modulus, "p" for phase, "c" for
cosine, or "s" for sine. (4) The 4th character is an integer that
indicates the modulation vector. To use the same symbol with modulation
components belonging to symmetry related axes and/or wave vectors,
is to point out symmetry relationships amongst them. Obviously,
modulation components belonging to symmetry-distinct atoms,
axes, or wave vectors cannot be related by symmetry.
Analogous tags: none, though analogous tags are needed for
displace, occ, U, and aniso waves.
Example:
loop_
_cell_wave_vector_seq_id
_cell_wave_vector_x
_cell_wave_vector_y
_cell_wave_vector_z
  1   0.30000   0.30000   0.00000
  2  -0.60000   0.30000   0.00000
loop_
_atom_site_Fourier_wave_vector_seq_id
_atom_site_Fourier_wave_vector_x
_atom_site_Fourier_wave_vector_y
_atom_site_Fourier_wave_vector_z
_atom_site_Fourier_wave_vector_q1_coeff
_atom_site_Fourier_wave_vector_q2_coeff
1   -0.30000   0.60000   0.00000  1  1
2   -0.60000   0.30000   0.00000  0  1
3   -0.30000  -0.30000   0.00000 -1  0
loop_
_atom_site_moment_Fourier_id
_atom_site_moment_Fourier_atom_site_label
_atom_site_moment_Fourier_wave_vector_seq_id
_atom_site_moment_Fourier_axis
_atom_site_moment_Fourier_param.cos
_atom_site_moment_Fourier_param.sin
_atom_site_moment_Fourier_param.cos_symmform
_atom_site_moment_Fourier_param.sin_symmform
1  Fe_1 1 x  0.00000  0.84852  0            mxs1
2  Fe_1 1 y  0.00000  0.42426  0            0.50000*mxs1
3  Fe_1 1 z  0.00000  0.00000  0            0
4  Fe_1 2 x  0.00000 -0.42426  0           -0.50000*mxs1
5  Fe_1 2 y  0.00000 -0.84852  0           -mxs1
6  Fe_1 2 z  0.00000  0.00000  0            0
7  Fe_1 3 x -0.42426  0.00000 -0.50000*mxs1 0
8  Fe_1 3 y  0.42426  0.00000  0.50000*mxs1 0
9  Fe_1 3 z  0.00000  0.00000  0            0
save__atom_site_moment_Fourier_param.cos_symmform

_definition.id                    '_atom_site_moment_Fourier_param.cos_symmform'
_name.category_id                       atom_site_moment_Fourier_param
_name.object_id                         cos_symmform
loop_
  _alias.definition_id            '_atom_site_moment_Fourier_param_cos_symmform'
_definition.update                      2016-05-24
_type.contents                          Text
_type.container                         Single
_description.text                       
;
     A symbolic expression that indicates the symmetry-restricted form of
     this  modulation component for the affected Wyckoff site.  The
     expression can include a zero, a symbol, or a symbol
     multiplied ('*') by a numerical prefactor. An allowed symbol is a
     string that contains the following parts.  (1) The 1st character
     is "m" for magnetic. (2) The 2nd character is one of "x", "y", or
     "z", to indicate the magnetic component to be modulated. (3) The
     3rd character is one of "m" for modulus, "p" for phase, "c" for
     cosine, or "s" for sine. (4) The 4th character is an integer that
     indicates the modulation vector. To use the same symbol with modulation 
     components belonging to symmetry related axes and/or wave vectors, 
     is to point out symmetry relationships amongst them. Obviously, 
     modulation components belonging to symmetry-distinct atoms, 
     axes, or wave vectors cannot be related by symmetry.
     
     Analogous tags: none, though analogous tags are needed for
     displace, occ, U, and aniso waves.
;
loop_
  _description_example.case
         
;
loop_
_cell_wave_vector_seq_id
_cell_wave_vector_x
_cell_wave_vector_y
_cell_wave_vector_z
  1   0.30000   0.30000   0.00000
  2  -0.60000   0.30000   0.00000
loop_
_atom_site_Fourier_wave_vector_seq_id
_atom_site_Fourier_wave_vector_x
_atom_site_Fourier_wave_vector_y
_atom_site_Fourier_wave_vector_z
_atom_site_Fourier_wave_vector_q1_coeff
_atom_site_Fourier_wave_vector_q2_coeff
1   -0.30000   0.60000   0.00000  1  1
2   -0.60000   0.30000   0.00000  0  1
3   -0.30000  -0.30000   0.00000 -1  0
loop_
_atom_site_moment_Fourier_id
_atom_site_moment_Fourier_atom_site_label
_atom_site_moment_Fourier_wave_vector_seq_id
_atom_site_moment_Fourier_axis
_atom_site_moment_Fourier_param.cos
_atom_site_moment_Fourier_param.sin
_atom_site_moment_Fourier_param.cos_symmform
_atom_site_moment_Fourier_param.sin_symmform
1  Fe_1 1 x  0.00000  0.84852  0            mxs1
2  Fe_1 1 y  0.00000  0.42426  0            0.50000*mxs1
3  Fe_1 1 z  0.00000  0.00000  0            0
4  Fe_1 2 x  0.00000 -0.42426  0           -0.50000*mxs1
5  Fe_1 2 y  0.00000 -0.84852  0           -mxs1
6  Fe_1 2 z  0.00000  0.00000  0            0
7  Fe_1 3 x -0.42426  0.00000 -0.50000*mxs1 0
8  Fe_1 3 y  0.42426  0.00000  0.50000*mxs1 0
9  Fe_1 3 z  0.00000  0.00000  0            0
; 

save_
_atom_site_moment_Fourier_param.id
CIF
An arbitrary code that uniquely identifies each of the components
of each of the magnetic Fourier modulations of each of the atoms
in the structure.  It will typically include an atom name, a
wave-vector id, and a coordinate axis. A sequence of positive
integers could also be used.  This tag is only used when the
magnetic Fourier modulation components are split off into a
separate loop, which is less typical.  When used, its value must
match one of the  _atom_site_moment_Fourier.id values in the
ATOM_SITE_MOMENT_FOURIER loop.
save__atom_site_moment_Fourier_param.id

_definition.id                          '_atom_site_moment_Fourier_param.id'
_name.category_id                       atom_site_moment_Fourier_param
_name.object_id                         id
loop_
  _alias.definition_id                  '_atom_site_moment_Fourier_param_id'
_definition.update                      2016-05-24

_description.text                       
;
     An arbitrary code that uniquely identifies each of the components
     of each of the magnetic Fourier modulations of each of the atoms
     in the structure.  It will typically include an atom name, a
     wave-vector id, and a coordinate axis. A sequence of positive
     integers could also be used.  This tag is only used when the
     magnetic Fourier modulation components are split off into a
     separate loop, which is less typical.  When used, its value must
     match one of the  _atom_site_moment_Fourier.id values in the
     ATOM_SITE_MOMENT_FOURIER loop.
;
_type.contents                          Text
_type.container                         Single
_type.purpose                           Link
_name.linked_item_id                    '_atom_site_moment_Fourier.id'

save_
_atom_site_moment_Fourier_param.modulus
CIF
The modulus component of the magnetic Fourier modulation of a
specific atom, wave vector and coordinate axis.  It is always
used together with the phase component, but not with the cosine
or sine components.
Analogous tags: msCIF:_atom_site_displace_Fourier_param.modulus,
msCIF:_atom_site_rot_Fourier_param.modulus,
msCIF:_atom_site_occ_Fourier_param.modulus,
msCIF:_atom_site_U_Fourier_param.modulus
Also see the technical descriptions of the analogous tags.
save__atom_site_moment_Fourier_param.modulus

_definition.id                         '_atom_site_moment_Fourier_param.modulus'
_name.category_id                       atom_site_moment_Fourier_param
_name.object_id                         modulus
loop_
  _alias.definition_id                 '_atom_site_moment_Fourier_param_modulus'
_definition.update                      2016-05-24
_units.code                             Bohr_magnetons
_description.text                       
;
     The modulus component of the magnetic Fourier modulation of a
     specific atom, wave vector and coordinate axis.  It is always
     used together with the phase component, but not with the cosine
     or sine components.

     Analogous tags: msCIF:_atom_site_displace_Fourier_param.modulus,
     msCIF:_atom_site_rot_Fourier_param.modulus,
     msCIF:_atom_site_occ_Fourier_param.modulus,
     msCIF:_atom_site_U_Fourier_param.modulus
     Also see the technical descriptions of the analogous tags.
;
_type.contents                          Real
_type.container                         Single
_type.purpose                           Measurand

save_
_atom_site_moment_Fourier_param.modulus_symmform
CIF
See the description and example given for the
_atom_site_moment_Fourier_param.cos_symmform item.
save__atom_site_moment_Fourier_param.modulus_symmform

_definition.id                '_atom_site_moment_Fourier_param.modulus_symmform'
_name.category_id                       atom_site_moment_Fourier_param
_name.object_id                         modulus_symmform
loop_
  _alias.definition_id        '_atom_site_moment_Fourier_param_modulus_symmform'
_definition.update                      2016-05-24
_type.contents                          Text
_type.container                         Single
_description.text                       
;
     See the description and example given for the
     _atom_site_moment_Fourier_param.cos_symmform item.
;

save_
_atom_site_moment_Fourier_param.phase
CIF
The phase component of the magnetic Fourier modulation of a
specific atom, wave vector and coordinate axis.  It is always
used together with the modulus component, but not with the cosine
or sine components. This parameter will be unitless regardless of
the coordinate system used.
Analogous tags: msCIF:_atom_site_displacive_Fourier_param.phase,
msCIF:_atom_site_rot_Fourier_param.phase,
msCIF:_atom_site_occ_Fourier_param.phase,
msCIF:_atom_site_U_Fourier_param.phase
Also see the technical descriptions of the analogous tags.
save__atom_site_moment_Fourier_param.phase

_definition.id                          '_atom_site_moment_Fourier_param.phase'
_name.category_id                       atom_site_moment_Fourier_param
_name.object_id                         phase
loop_
  _alias.definition_id                  '_atom_site_moment_Fourier_param_phase'
_definition.update                      2016-05-24
_enumeration.range                      -1.0:1.0
_units.code                             cycles
_description.text                       
;
     The phase component of the magnetic Fourier modulation of a
     specific atom, wave vector and coordinate axis.  It is always
     used together with the modulus component, but not with the cosine
     or sine components. This parameter will be unitless regardless of
     the coordinate system used.

     Analogous tags: msCIF:_atom_site_displacive_Fourier_param.phase,
     msCIF:_atom_site_rot_Fourier_param.phase,
     msCIF:_atom_site_occ_Fourier_param.phase,
     msCIF:_atom_site_U_Fourier_param.phase
     Also see the technical descriptions of the analogous tags.
;
_type.contents                          Real
_type.container                         Single
_type.purpose                           Measurand

save_
_atom_site_moment_Fourier_param.phase_symmform
CIF
See the description and example given for the
_atom_site_moment_Fourier_param.cos_symmform item.
save__atom_site_moment_Fourier_param.phase_symmform

_definition.id                  '_atom_site_moment_Fourier_param.phase_symmform'
_name.category_id                       atom_site_moment_Fourier_param
_name.object_id                         phase_symmform
loop_
  _alias.definition_id          '_atom_site_moment_Fourier_param_phase_symmform'
_definition.update                      2016-05-24
_type.contents                          Text
_type.container                         Single
_description.text                       
;
     See the description and example given for the
     _atom_site_moment_Fourier_param.cos_symmform item.
;

save_
_atom_site_moment_Fourier_param.sin
CIF
The sine component of the magnetic Fourier modulation of a
specific atom, wave vector and coordinate axis.  It is always
used together with the cosine component, but not with the modulus
or phase components.
Analogous tags: msCIF:_atom_site_displace_Fourier_param.sin,
msCIF:_atom_site_rot_Fourier_param.sin,
msCIF:_atom_site_occ_Fourier_param.sin,
msCIF:_atom_site_U_Fourier_param.sin
Also see the technical descriptions of the analogous tags.
save__atom_site_moment_Fourier_param.sin

_definition.id                          '_atom_site_moment_Fourier_param.sin'
_name.category_id                       atom_site_moment_Fourier_param
_name.object_id                         sin
loop_
  _alias.definition_id                  '_atom_site_moment_Fourier_param_sin'
_definition.update                      2016-05-24
_units.code                             Bohr_magnetons
_description.text                       
;
     The sine component of the magnetic Fourier modulation of a
     specific atom, wave vector and coordinate axis.  It is always
     used together with the cosine component, but not with the modulus
     or phase components.

     Analogous tags: msCIF:_atom_site_displace_Fourier_param.sin,
     msCIF:_atom_site_rot_Fourier_param.sin,
     msCIF:_atom_site_occ_Fourier_param.sin,
     msCIF:_atom_site_U_Fourier_param.sin
     Also see the technical descriptions of the analogous tags.
;
_type.contents                          Real
_type.container                         Single
_type.purpose                           Measurand

save_
_atom_site_moment_Fourier_param.sin_symmform
CIF
See the description and example given for the
_atom_site_moment_Fourier_param.cos_symmform item.
save__atom_site_moment_Fourier_param.sin_symmform

_definition.id                    '_atom_site_moment_Fourier_param.sin_symmform'
_name.category_id                       atom_site_moment_Fourier_param
_name.object_id                         sin_symmform
loop_
  _alias.definition_id            '_atom_site_moment_Fourier_param_sin_symmform'
_definition.update                      2016-05-24
_type.contents                          Text
_type.container                         Single

_description.text                       
;
     See the description and example given for the
     _atom_site_moment_Fourier_param.cos_symmform item.
;

save_
ATOM_SITE_MOMENT_SPECIAL_FUNC
CIF
Data items in the ATOM_SITE_MOMENT_SPECIAL_FUNC category record
details about the magnetic modulation of an atom site in a
modulated structure when it is not described by Fourier series.
Special functions are effective in some cases where the
modulations are highly anharmonic, since the number of parameters
is drastically reduced. However, they are in general
discontinuous or with discontinuous derivatives and therefore
these functions describe an ideal situation that never occurs in
a real modulated crystal. Up to now, only a few types of special
functions have been used and all of them come from the JANA suite
of programs. Although this approach is far from being general, it
has the advantage that the functions are tightly defined and
therefore the relevant parameters can be  calculated easily. In
this dictionary, only the special functions  available in
JANA2000 have been included. These are:  (1) Sawtooth functions
for atomic displacive modulation along x, y and z.  (2)
Crenel functions for the occupational modulation of atoms
and rigid groups. Both of these only apply to
one-dimensional modulated structures.
Analogous tags: _atom_site_displace_special_func.*,
_atom_site_occ_special_func.*
save_atom_site_moment_special_func

_definition.id                          atom_site_moment_special_func
_name.category_id                       MAGNETIC
_name.object_id                         atom_site_moment_special_func
_definition.update                      2016-05-24
_description.text                       
;
     Data items in the ATOM_SITE_MOMENT_SPECIAL_FUNC category record
     details about the magnetic modulation of an atom site in a
     modulated structure when it is not described by Fourier series.
     Special functions are effective in some cases where the
     modulations are highly anharmonic, since the number of parameters
     is drastically reduced. However, they are in general
     discontinuous or with discontinuous derivatives and therefore
     these functions describe an ideal situation that never occurs in
     a real modulated crystal. Up to now, only a few types of special
     functions have been used and all of them come from the JANA suite
     of programs. Although this approach is far from being general, it
     has the advantage that the functions are tightly defined and
     therefore the relevant parameters can be  calculated easily. In
     this dictionary, only the special functions  available in
     JANA2000 have been included. These are:  (1) Sawtooth functions
     for atomic displacive modulation along x, y and z.  (2)
     Crenel functions for the occupational modulation of atoms
     and rigid groups. Both of these only apply to
     one-dimensional modulated structures.

     Analogous tags: _atom_site_displace_special_func.*,
     _atom_site_occ_special_func.*
;
_definition.scope                       Category
_definition.class                       Loop
_category.key_id                '_atom_site_moment_special_func.atom_site_label'
loop_
    _category_key.name
                                '_atom_site_moment_special_func.atom_site_label'

save_
_atom_site_moment_special_func.atom_site_label
CIF
This label is a unique identifier for a particular site in the
asymmetric unit of the crystal unit cell.
save__atom_site_moment_special_func.atom_site_label

_definition.id                  '_atom_site_moment_special_func.atom_site_label'
_name.category_id                       atom_site_moment_special_func
_name.object_id                         atom_site_label


    _definition.update           2021-10-25
    _description.text
;
     This label is a unique identifier for a particular site in the
     asymmetric unit of the crystal unit cell.
;
    _name.linked_item_id       '_atom_site.label'
    _type.purpose                Link
    _type.source                 Assigned
    _type.container              Single
    _type.contents               Word
     
# Following have been imported above:
#_import.get [{'save':atom_site_id    'file':templ_attr.cif}]
save_
_atom_site_moment_special_func.sawtooth_ax
CIF
_atom_site_moment_special_func.sawtooth_ items are the
adjustable parameters of a magnetic sawtooth function.    A
magnetic sawtooth function is only used when working    in the
crystal-axis coordinate system.  It is defined    along the
internal space direction as follows:
mx=2*ax[(x4-c)/w]                      my=2*ay[(x4-c)/w]
mz=2*az[(x4-c)/w]
with x4 belonging to the interval [c-(w/2), c+(w/2)], where
ax,    ay and az are the amplitudes (maximum magnetic moments)
along each crystallographic axis, w is its width, x4 is the
internal coordinate and c is the centre of the function in
internal space.  The use of this function is restricted to
one-dimensional modulated structures. For more details,     see
the manual for JANA2000 (Petricek & Dusek, 2000).
Calculated parameters mx, my and mz must be in Bohr-magneton
units and can vary in the range (-infinity,infinity).
Ref: Petricek, V. & Dusek, M. (2000). JANA2000.
The crystallographic computing system. Institute of Physics, Prague,
Czech Republic.
Analogous tags: _atom_site_displace_special_func.sawtooth_*,
_atom_site_occ_special_func.cresnel_*
save__atom_site_moment_special_func.sawtooth_ax

_definition.id                      '_atom_site_moment_special_func.sawtooth_ax'
_name.category_id                       atom_site_moment_special_func
_name.object_id                         sawtooth_ax
loop_
  _alias.definition_id              '_atom_site_moment_special_func_sawtooth_ax'
_definition.update                      2016-05-24
_type.contents                          Real
_type.container                         Single
_type.purpose                           Measurand

_description.text                       
;
     _atom_site_moment_special_func.sawtooth_ items are the
     adjustable parameters of a magnetic sawtooth function.    A
     magnetic sawtooth function is only used when working    in the
     crystal-axis coordinate system.  It is defined    along the
     internal space direction as follows:
     mx=2*ax[(x4-c)/w]                      my=2*ay[(x4-c)/w]
     mz=2*az[(x4-c)/w]
        with x4 belonging to the interval [c-(w/2), c+(w/2)], where
     ax,    ay and az are the amplitudes (maximum magnetic moments)
     along each crystallographic axis, w is its width, x4 is the
     internal coordinate and c is the centre of the function in
     internal space.  The use of this function is restricted to
     one-dimensional modulated structures. For more details,     see
     the manual for JANA2000 (Petricek & Dusek, 2000).
        Calculated parameters mx, my and mz must be in Bohr-magneton
     units and can vary in the range (-infinity,infinity).

     Ref: Petricek, V. & Dusek, M. (2000). JANA2000.
     The crystallographic computing system. Institute of Physics, Prague,
     Czech Republic.

     Analogous tags: _atom_site_displace_special_func.sawtooth_*,
     _atom_site_occ_special_func.cresnel_*
;
_units.code                             Bohr_magnetons

save_
_atom_site_moment_special_func.sawtooth_ay
CIF
_atom_site_moment_special_func.sawtooth_ items are the
adjustable parameters of a magnetic sawtooth function.    A
magnetic sawtooth function is only used when working    in the
crystal-axis coordinate system.  It is defined    along the
internal space direction as follows:
mx=2*ax[(x4-c)/w]                      my=2*ay[(x4-c)/w]
mz=2*az[(x4-c)/w]
with x4 belonging to the interval [c-(w/2), c+(w/2)], where
ax,    ay and az are the amplitudes (maximum magnetic moments)
along each crystallographic axis, w is its width, x4 is the
internal coordinate and c is the centre of the function in
internal space.  The use of this function is restricted to
one-dimensional modulated structures. For more details,     see
the manual for JANA2000 (Petricek & Dusek, 2000).
Calculated parameters mx, my and mz must be in Bohr-magneton
units and can vary in the range (-infinity,infinity).
Ref: Petricek, V. & Dusek, M. (2000). JANA2000.
The crystallographic computing system. Institute of Physics, Prague,
Czech Republic.
Analogous tags: _atom_site_displace_special_func.sawtooth_*,
_atom_site_occ_special_func.cresnel_*
save__atom_site_moment_special_func.sawtooth_ay

_definition.id                      '_atom_site_moment_special_func.sawtooth_ay'
_name.category_id                       atom_site_moment_special_func
_name.object_id                         sawtooth_ay
loop_
  _alias.definition_id              '_atom_site_moment_special_func_sawtooth_ay'
_definition.update                      2016-05-24
_type.contents                          Real
_type.container                         Single
_type.purpose                           Measurand

_description.text                       
;
     _atom_site_moment_special_func.sawtooth_ items are the
     adjustable parameters of a magnetic sawtooth function.    A
     magnetic sawtooth function is only used when working    in the
     crystal-axis coordinate system.  It is defined    along the
     internal space direction as follows:
     mx=2*ax[(x4-c)/w]                      my=2*ay[(x4-c)/w]
     mz=2*az[(x4-c)/w]
        with x4 belonging to the interval [c-(w/2), c+(w/2)], where
     ax,    ay and az are the amplitudes (maximum magnetic moments)
     along each crystallographic axis, w is its width, x4 is the
     internal coordinate and c is the centre of the function in
     internal space.  The use of this function is restricted to
     one-dimensional modulated structures. For more details,     see
     the manual for JANA2000 (Petricek & Dusek, 2000).
        Calculated parameters mx, my and mz must be in Bohr-magneton
     units and can vary in the range (-infinity,infinity).

     Ref: Petricek, V. & Dusek, M. (2000). JANA2000.
     The crystallographic computing system. Institute of Physics, Prague,
     Czech Republic.

     Analogous tags: _atom_site_displace_special_func.sawtooth_*,
     _atom_site_occ_special_func.cresnel_*
;
_units.code                             Bohr_magnetons

save_
_atom_site_moment_special_func.sawtooth_az
CIF
_atom_site_moment_special_func.sawtooth_ items are the
adjustable parameters of a magnetic sawtooth function.    A
magnetic sawtooth function is only used when working    in the
crystal-axis coordinate system.  It is defined    along the
internal space direction as follows:
mx=2*ax[(x4-c)/w]                      my=2*ay[(x4-c)/w]
mz=2*az[(x4-c)/w]
with x4 belonging to the interval [c-(w/2), c+(w/2)], where
ax,    ay and az are the amplitudes (maximum magnetic moments)
along each crystallographic axis, w is its width, x4 is the
internal coordinate and c is the centre of the function in
internal space.  The use of this function is restricted to
one-dimensional modulated structures. For more details,     see
the manual for JANA2000 (Petricek & Dusek, 2000).
Calculated parameters mx, my and mz must be in Bohr-magneton
units and can vary in the range (-infinity,infinity).
Ref: Petricek, V. & Dusek, M. (2000). JANA2000.
The crystallographic computing system. Institute of Physics, Prague,
Czech Republic.
Analogous tags: _atom_site_displace_special_func.sawtooth_*,
_atom_site_occ_special_func.cresnel_*
save__atom_site_moment_special_func.sawtooth_az

_definition.id                      '_atom_site_moment_special_func.sawtooth_az'
_name.category_id                       atom_site_moment_special_func
_name.object_id                         sawtooth_az
loop_
  _alias.definition_id              '_atom_site_moment_special_func_sawtooth_az'
_definition.update                      2016-05-24
_type.contents                          Real
_type.container                         Single
_type.purpose                           Measurand

_description.text                       
;
     _atom_site_moment_special_func.sawtooth_ items are the
     adjustable parameters of a magnetic sawtooth function.    A
     magnetic sawtooth function is only used when working    in the
     crystal-axis coordinate system.  It is defined    along the
     internal space direction as follows:
     mx=2*ax[(x4-c)/w]                      my=2*ay[(x4-c)/w]
     mz=2*az[(x4-c)/w]
        with x4 belonging to the interval [c-(w/2), c+(w/2)], where
     ax,    ay and az are the amplitudes (maximum magnetic moments)
     along each crystallographic axis, w is its width, x4 is the
     internal coordinate and c is the centre of the function in
     internal space.  The use of this function is restricted to
     one-dimensional modulated structures. For more details,     see
     the manual for JANA2000 (Petricek & Dusek, 2000).
        Calculated parameters mx, my and mz must be in Bohr-magneton
     units and can vary in the range (-infinity,infinity).

     Ref: Petricek, V. & Dusek, M. (2000). JANA2000.
     The crystallographic computing system. Institute of Physics, Prague,
     Czech Republic.

     Analogous tags: _atom_site_displace_special_func.sawtooth_*,
     _atom_site_occ_special_func.cresnel_*
;
_units.code                             Bohr_magnetons

save_
_atom_site_moment_special_func.sawtooth_c
CIF
_atom_site_moment_special_func.sawtooth_ items are the
adjustable parameters of a magnetic sawtooth function.    A
magnetic sawtooth function is only used when working    in the
crystal-axis coordinate system.  It is defined    along the
internal space direction as follows:
mx=2*ax[(x4-c)/w]                      my=2*ay[(x4-c)/w]
mz=2*az[(x4-c)/w]
with x4 belonging to the interval [c-(w/2), c+(w/2)], where
ax,    ay and az are the amplitudes (maximum magnetic moments)
along each crystallographic axis, w is its width, x4 is the
internal coordinate and c is the centre of the function in
internal space.  The use of this function is restricted to
one-dimensional modulated structures. For more details,     see
the manual for JANA2000 (Petricek & Dusek, 2000).
Calculated parameters mx, my and mz must be in Bohr-magneton
units and can vary in the range (-infinity,infinity).
Ref: Petricek, V. & Dusek, M. (2000). JANA2000.
The crystallographic computing system. Institute of Physics, Prague,
Czech Republic.
Analogous tags: _atom_site_displace_special_func.sawtooth_*,
_atom_site_occ_special_func.cresnel_*
save__atom_site_moment_special_func.sawtooth_c

_definition.id                       '_atom_site_moment_special_func.sawtooth_c'
_name.category_id                       atom_site_moment_special_func
_name.object_id                         sawtooth_c
loop_
  _alias.definition_id               '_atom_site_moment_special_func_sawtooth_c'
_definition.update                      2016-05-24
_type.contents                          Real
_type.container                         Single
_type.purpose                           Measurand

_description.text                       
;
     _atom_site_moment_special_func.sawtooth_ items are the
     adjustable parameters of a magnetic sawtooth function.    A
     magnetic sawtooth function is only used when working    in the
     crystal-axis coordinate system.  It is defined    along the
     internal space direction as follows:
     mx=2*ax[(x4-c)/w]                      my=2*ay[(x4-c)/w]
     mz=2*az[(x4-c)/w]
        with x4 belonging to the interval [c-(w/2), c+(w/2)], where
     ax,    ay and az are the amplitudes (maximum magnetic moments)
     along each crystallographic axis, w is its width, x4 is the
     internal coordinate and c is the centre of the function in
     internal space.  The use of this function is restricted to
     one-dimensional modulated structures. For more details,     see
     the manual for JANA2000 (Petricek & Dusek, 2000).
        Calculated parameters mx, my and mz must be in Bohr-magneton
     units and can vary in the range (-infinity,infinity).

     Ref: Petricek, V. & Dusek, M. (2000). JANA2000.
     The crystallographic computing system. Institute of Physics, Prague,
     Czech Republic.

     Analogous tags: _atom_site_displace_special_func.sawtooth_*,
     _atom_site_occ_special_func.cresnel_*
;
_units.code                             Bohr_magnetons

save_
_atom_site_moment_special_func.sawtooth_w
CIF
_atom_site_moment_special_func.sawtooth_ items are the
adjustable parameters of a magnetic sawtooth function.    A
magnetic sawtooth function is only used when working    in the
crystal-axis coordinate system.  It is defined    along the
internal space direction as follows:
mx=2*ax[(x4-c)/w]                      my=2*ay[(x4-c)/w]
mz=2*az[(x4-c)/w]
with x4 belonging to the interval [c-(w/2), c+(w/2)], where
ax,    ay and az are the amplitudes (maximum magnetic moments)
along each crystallographic axis, w is its width, x4 is the
internal coordinate and c is the centre of the function in
internal space.  The use of this function is restricted to
one-dimensional modulated structures. For more details,     see
the manual for JANA2000 (Petricek & Dusek, 2000).
Calculated parameters mx, my and mz must be in Bohr-magneton
units and can vary in the range (-infinity,infinity).
Ref: Petricek, V. & Dusek, M. (2000). JANA2000.
The crystallographic computing system. Institute of Physics, Prague,
Czech Republic.
Analogous tags: _atom_site_displace_special_func.sawtooth_*,
_atom_site_occ_special_func.cresnel_*
save__atom_site_moment_special_func.sawtooth_w

_definition.id                       '_atom_site_moment_special_func.sawtooth_w'
_name.category_id                       atom_site_moment_special_func
_name.object_id                         sawtooth_w
loop_
  _alias.definition_id               '_atom_site_moment_special_func_sawtooth_w'
_definition.update                      2016-05-24
_type.contents                          Real
_type.container                         Single
_type.purpose                           Measurand

_description.text                       
;
     _atom_site_moment_special_func.sawtooth_ items are the
     adjustable parameters of a magnetic sawtooth function.    A
     magnetic sawtooth function is only used when working    in the
     crystal-axis coordinate system.  It is defined    along the
     internal space direction as follows:
     mx=2*ax[(x4-c)/w]                      my=2*ay[(x4-c)/w]
     mz=2*az[(x4-c)/w]
        with x4 belonging to the interval [c-(w/2), c+(w/2)], where
     ax,    ay and az are the amplitudes (maximum magnetic moments)
     along each crystallographic axis, w is its width, x4 is the
     internal coordinate and c is the centre of the function in
     internal space.  The use of this function is restricted to
     one-dimensional modulated structures. For more details,     see
     the manual for JANA2000 (Petricek & Dusek, 2000).
        Calculated parameters mx, my and mz must be in Bohr-magneton
     units and can vary in the range (-infinity,infinity).

     Ref: Petricek, V. & Dusek, M. (2000). JANA2000.
     The crystallographic computing system. Institute of Physics, Prague,
     Czech Republic.

     Analogous tags: _atom_site_displace_special_func.sawtooth_*,
     _atom_site_occ_special_func.cresnel_*
;
_units.code                             Bohr_magnetons

save_
ATOM_SITE_ROTATION
CIF
This category provides a loop for presenting atom-site axial-vector
rotations in several coordinate systems.  Such axial vectors can
be applied to describe the rotations of molecular or polyhedral
rigid bodies about their pivot atoms or sites, though the use of this
category to describe patterns of rotations does not require
that rigid bodies be explicitly defined.  Because magnetic moments
and rotations are both axial rather than polar vectors, their
descriptive requirements are highly analogous, except that static
rotations are insensitive to time-reversal, so that normal
(non-magnetic) symmetry groups are appropriate. This is a child category
of the ATOM_SITE category, though pivot-site rotations will typically
be listed in a separate loop; the category items mirror those of defined
for the ATOM_SITE_MOMENT category.
save_atom_site_rotation

_definition.id                          atom_site_rotation
_name.category_id                       atom_site
_name.object_id                         atom_site_rotation
_definition.update                      2018-07-18
_description.text                       
;
     This category provides a loop for presenting atom-site axial-vector
     rotations in several coordinate systems.  Such axial vectors can
     be applied to describe the rotations of molecular or polyhedral
     rigid bodies about their pivot atoms or sites, though the use of this
     category to describe patterns of rotations does not require
     that rigid bodies be explicitly defined.  Because magnetic moments 
     and rotations are both axial rather than polar vectors, their 
     descriptive requirements are highly analogous, except that static 
     rotations are insensitive to time-reversal, so that normal
     (non-magnetic) symmetry groups are appropriate. This is a child category 
     of the ATOM_SITE category, though pivot-site rotations will typically 
     be listed in a separate loop; the category items mirror those of defined
     for the ATOM_SITE_MOMENT category.  
;
_definition.scope                       Category
_definition.class                       Loop
loop_
    _category_key.name                  '_atom_site_rotation.label'

save_
_atom_site_rotation.Cartn
CIF
The atom-site rotation vector specified according to a set
of orthogonal Cartesian axes where x||a and z||c* with y
completing a right-hand set.
save__atom_site_rotation.Cartn

_definition.id                          '_atom_site_rotation.Cartn'
_name.category_id                       atom_site_rotation
_name.object_id                         Cartn
loop_
  _alias.definition_id
  '_atom_site_rotation_Cartn'

_definition.update                      2018-07-18
_description.text                       
;
     The atom-site rotation vector specified according to a set
     of orthogonal Cartesian axes where x||a and z||c* with y
     completing a right-hand set.
;
_type.contents                          Real
_type.dimension                         [3]
_type.container                         Matrix
_type.purpose                           Measurand
_units.code                             radians
loop_
  _method.purpose
  _method.expression
         Evaluation          
;
    with a as atom_site_rotation
    a.Cartn = [a.Cartn_x,a.Cartn_y,a.Cartn_z]

;

save_
_atom_site_rotation.Cartn_x
CIF
The x component of the atom-site rotation vector
(see _atom_site_rotation.Cartn).
save__atom_site_rotation.Cartn_x

_definition.id                          '_atom_site_rotation.Cartn_x'
_name.category_id                       atom_site_rotation
_name.object_id                         Cartn_x
loop_
  _alias.definition_id                  '_atom_site_rotation_Cartn_x'
_definition.update                      2018-07-18
_type.contents                          Real
_type.container                         Single
_type.purpose                           Measurand
_description.text                       
;
     The x component of the atom-site rotation vector
     (see _atom_site_rotation.Cartn).
;
_units.code                             radians

save_
_atom_site_rotation.Cartn_y
CIF
The y component of the atom-site rotation vector
(see _atom_site_rotation.Cartn).
save__atom_site_rotation.Cartn_y

_definition.id                          '_atom_site_rotation.Cartn_y'
_name.category_id                       atom_site_rotation
_name.object_id                         Cartn_y
loop_
  _alias.definition_id                  '_atom_site_rotation_Cartn_y'
_definition.update                      2018-07-18
_type.contents                          Real
_type.container                         Single
_type.purpose                           Measurand
_description.text                       
;
     The y component of the atom-site rotation vector
     (see _atom_site_rotation.Cartn).

;
_units.code                             radians

save_
_atom_site_rotation.Cartn_z
CIF
The z component of the atom-site rotation vector
(see _atom_site_rotation.Cartn).
save__atom_site_rotation.Cartn_z

_definition.id                          '_atom_site_rotation.Cartn_z'
_name.category_id                       atom_site_rotation
_name.object_id                         Cartn_z
loop_
  _alias.definition_id                  '_atom_site_rotation_Cartn_z'
_definition.update                      2018-07-18
_type.contents                          Real
_type.container                         Single
_type.purpose                           Measurand
_description.text                       
;
     The z component of the atom-site rotation vector
     (see _atom_site_rotation.Cartn).

;
_units.code                             radians

save_
_atom_site_rotation.crystalaxis
CIF
The atom-site rotation vector specified using the components parallel
to each of the unit-cell axes.  This is the recommended coordinate
system for presenting axial rotation vectors.
save__atom_site_rotation.crystalaxis

_definition.id                          '_atom_site_rotation.crystalaxis'
_name.category_id                       atom_site_rotation
_name.object_id                         crystalaxis
loop_
  _alias.definition_id                  '_atom_site_rotation_crystalaxis'
_definition.update                      2018-07-18
_description.text                       
;
     The atom-site rotation vector specified using the components parallel 
     to each of the unit-cell axes.  This is the recommended coordinate 
     system for presenting axial rotation vectors.
;
_type.contents                          Real
_type.container                         Matrix
_type.dimension                         [3]
_type.purpose                           Measurand
_units.code                             radians
loop_
  _method.purpose
  _method.expression
         Evaluation          
;
    with a as atom_site_rotation
    a.crystalaxis = [a.crystalaxis_x,a.crystalaxis_y,a.crystalaxis_z]

; 

save_
_atom_site_rotation.crystalaxis_x
CIF
The component of the atom-site rotation vector parallel to the first unit-cell axis.  See _atom_site_rotation.crystalaxis.
save__atom_site_rotation.crystalaxis_x

_definition.id                          '_atom_site_rotation.crystalaxis_x'
_name.category_id                       atom_site_rotation
_name.object_id                         crystalaxis_x
loop_
  _alias.definition_id                  '_atom_site_rotation_crystalaxis_x'
_definition.update                      2018-07-18
_type.contents                          Real
_type.container                         Single
_type.purpose                           Measurand
_description.text                       
;
     The component of the atom-site rotation vector parallel to the first unit-cell axis.  See _atom_site_rotation.crystalaxis.
;
_units.code                             radians

save_
_atom_site_rotation.crystalaxis_y
CIF
The component of the atom-site rotation vector parallel to the second
cell axis.  See _atom_site_rotation.crystalaxis.
save__atom_site_rotation.crystalaxis_y

_definition.id                          '_atom_site_rotation.crystalaxis_y'
_name.category_id                       atom_site_rotation
_name.object_id                         crystalaxis_y
loop_
  _alias.definition_id                  '_atom_site_rotation_crystalaxis_y'
_definition.update                      2018-07-18
_type.contents                          Real
_type.container                         Single
_type.purpose                           Measurand
_description.text                       
;
     The component of the atom-site rotation vector parallel to the second
unit-cell axis.  See _atom_site_rotation.crystalaxis.
;
_units.code                             radians

save_
_atom_site_rotation.crystalaxis_z
CIF
The component of the atom-site rotation vector parallel to the third unit-cell axis.  See _atom_site_rotation.crystalaxis.
save__atom_site_rotation.crystalaxis_z

_definition.id                          '_atom_site_rotation.crystalaxis_z'
_name.category_id                       atom_site_rotation
_name.object_id                         crystalaxis_z
loop_
  _alias.definition_id                  '_atom_site_rotation_crystalaxis_z'
_definition.update                      2018-07-18
_type.contents                          Real
_type.container                         Single
_type.purpose                           radians
_description.text                       
;
     The component of the atom-site rotation vector parallel to the third unit-cell axis.  See _atom_site_rotation.crystalaxis.
;
_units.code                             radians

save_
_atom_site_rotation.label
CIF
This label is a unique identifier for a particular site in the
asymmetric unit of the crystal unit cell.
save__atom_site_rotation.label

_definition.id                          '_atom_site_rotation.label'
_name.category_id                       atom_site_rotation
_name.object_id                         label
loop_
  _alias.definition_id                  '_atom_site_rotation_label'


    _definition.update           2021-10-25
    _description.text
;
     This label is a unique identifier for a particular site in the
     asymmetric unit of the crystal unit cell.
;
    _name.linked_item_id       '_atom_site.label'
    _type.purpose                Link
    _type.source                 Assigned
    _type.container              Single
    _type.contents               Word
     
# Following have been imported above:
#_import.get [{"save":atom_site_id "file":templ_attr.cif}]
_definition.update                      2018-07-18

save_
_atom_site_rotation.modulation_flag
CIF
A code that signals whether the structural model includes the
modulation of the rotation of a given atom site.
save__atom_site_rotation.modulation_flag

_definition.id                          '_atom_site_rotation.modulation_flag'
_name.category_id                       atom_site_rotation
_name.object_id                         modulation_flag
loop_
  _alias.definition_id                  '_atom_site_rotation_modulation_flag'
_definition.update                      2018-07-18
_description.text                       
;
     A code that signals whether the structural model includes the
     modulation of the rotation of a given atom site.
;
_type.contents                          Code
_type.container                         Single
loop_
  _enumeration_set.state
  _enumeration_set.detail
   'yes'            'rotational modulation'
   'y'              'abbreviation for "yes"'
   'no'             'no rotational modulation'
   'n'              'abbreviation for "no"'

save_
_atom_site_rotation.refinement_flags_rotational
CIF
The constraints/restraints placed on the rotation vector during
model refinement.
save__atom_site_rotation.refinement_flags_rotational

_definition.id                     '_atom_site_rotation.refinement_flags_rotational'
_name.category_id                       atom_site_rotation
_name.object_id                         refinement_flags_rotational
loop_
  _alias.definition_id        '_atom_site_rotation_refinement_flags_rotational'
_definition.update                      2018-07-18
_type.container                         Single
_type.purpose                           State
_description.text                       
;
    The constraints/restraints placed on the rotation vector during
    model refinement.
;
_type.contents                          Code
loop_
  _enumeration_set.state
  _enumeration_set.detail
         .         'no constraint on rotation'      
         S         'special position constraint on rotation'  
         M         'modulus restraint on rotation'  
         A         'direction restraints on rotation'         
         SM        'superposition of S and M constraints/restraints'           
         SA        'superposition of S and A constraints/restraints'           
         MA        'superposition of M and A constraints/restraints'           
         SMA       'superposition of S, M and A constraints/restraints' 

save_
_atom_site_rotation.spherical_azimuthal
CIF
The azimuthal angle of the atom-site rotation vector
specified in spherical coordinates relative to a set of
orthogonal Cartesian axes where x||a and z||c* with y completing
a right-hand set.  The azimuthal angle is a right-handed rotation
around the +z axis starting from the +x side of the x-z plane.
save__atom_site_rotation.spherical_azimuthal

_definition.id                          '_atom_site_rotation.spherical_azimuthal'
_name.category_id                       atom_site_rotation
_name.object_id                         spherical_azimuthal
loop_
  _alias.definition_id                  '_atom_site_rotation_spherical_azimuthal'
_definition.update                      2018-07-18
_enumeration.range                      0.0:6.2831854
_units.code                             radians
_description.text                       
;
     The azimuthal angle of the atom-site rotation vector
     specified in spherical coordinates relative to a set of
     orthogonal Cartesian axes where x||a and z||c* with y completing
     a right-hand set.  The azimuthal angle is a right-handed rotation
     around the +z axis starting from the +x side of the x-z plane.
;
_type.contents                          Real
_type.container                         Single
_type.purpose                           Measurand

save_
_atom_site_rotation.spherical_modulus
CIF
The modulus of the atom-site rotation vector specified in
spherical coordinates relative to a set of orthogonal Cartesian
axes where x||a and z||c* with y completing a right-hand set.
save__atom_site_rotation.spherical_modulus

_definition.id                          '_atom_site_rotation.spherical_modulus'
_name.category_id                       atom_site_rotation
_name.object_id                         spherical_modulus
loop_
  _alias.definition_id                  '_atom_site_rotation_spherical_modulus'
_definition.update                      2018-07-18
_units.code                             radians
_description.text                       
;
     The modulus of the atom-site rotation vector specified in
     spherical coordinates relative to a set of orthogonal Cartesian
     axes where x||a and z||c* with y completing a right-hand set.
;
_type.contents                          Real
_type.container                         Single
_type.purpose                           Measurand
save_
_atom_site_rotation.spherical_polar
CIF
The polar angle of the atom-site rotation vector specified
in spherical coordinates relative to a set of orthogonal
Cartesian axes where x||a and z||c* with y completing a
right-hand set. The polar angle is measured relative to the +z axis.
save__atom_site_rotation.spherical_polar

_definition.id                          '_atom_site_rotation.spherical_polar'
_name.category_id                       atom_site_rotation
_name.object_id                         spherical_polar
loop_
  _alias.definition_id                  '_atom_site_rotation_spherical_polar'
_definition.update                      2018-07-18
_enumeration.range                      0.0:3.1415927
_units.code                             radians
_description.text                       
;
     The polar angle of the atom-site rotation vector specified
     in spherical coordinates relative to a set of orthogonal
     Cartesian axes where x||a and z||c* with y completing a
     right-hand set. The polar angle is measured relative to the +z axis.
;
_type.contents                          Real
_type.container                         Single
_type.purpose                           Measurand

save_
_atom_site_rotation.symmform
CIF
A symbolic expression that indicates the symmetry-restricted form
of the components of the rotation vector of the atom.
Unlike the positional coordinates of an atom, its rotation
has no translational component to be represented.
Examples:
rx,ry,rz
rx,-rx,0
rx,0,rz
save__atom_site_rotation.symmform

_definition.id                          '_atom_site_rotation.symmform'
_name.category_id                       atom_site_rotation
_name.object_id                         symmform
loop_
  _alias.definition_id                  '_atom_site_rotation_symmform'
_definition.update                      2018-07-18
_description.text                       
;
     A symbolic expression that indicates the symmetry-restricted form
     of the components of the rotation vector of the atom.
     Unlike the positional coordinates of an atom, its rotation
     has no translational component to be represented.
;
_type.contents                          Text
_type.container                         Single
loop_
  _description_example.case
  _description_example.detail
         'rx,ry,rz'          'no symmetry restrictions'     
         'rx,-rx,0'
;                             y component equal and opposite to x component
                              with z component zero
;
         'rx,0,rz'           'y component zero'

save_
_atom_site_rotation.magnitude
CIF
The magnitude of a rotation vector.
save__atom_site_rotation.magnitude

_definition.id                          '_atom_site_rotation.magnitude'
_name.category_id                       atom_site_rotation
_name.object_id                         magnitude
loop_
  _alias.definition_id                  '_atom_site_rotation_magnitude'
_definition.update                      2018-07-18
_type.contents                          Real
_type.container                         Single
_type.purpose                           Measurand
_description.text                       
;
     The magnitude of a rotation vector.
;
_units.code                             radians
save_
ATOM_SITES_MOMENT_FOURIER
CIF
Data items in the ATOM_SITES_MOMENT_FOURIER category record
details common to the magnetic modulations of atom sites in a
modulated structure.
Details for individual atom sites are described by data items in
the ATOM_SITE_MOMENT_FOURIER category.
Analogous tags: _atom_sites_displace_Fourier.*,
_atom_sites_rot_Fourier.*,     _atom_sites_occ_Fourier.*,
_atom_sites_U_Fourier.*
save_atom_sites_moment_Fourier

_definition.id                          atom_sites_moment_Fourier
_name.category_id                       MAGNETIC
_name.object_id                         atom_sites_moment_Fourier
_definition.update                      2016-05-24
_description.text                       
;
     Data items in the ATOM_SITES_MOMENT_FOURIER category record
     details common to the magnetic modulations of atom sites in a
     modulated structure.
     Details for individual atom sites are described by data items in
     the ATOM_SITE_MOMENT_FOURIER category.

     Analogous tags: _atom_sites_displace_Fourier.*,
     _atom_sites_rot_Fourier.*,     _atom_sites_occ_Fourier.*,
     _atom_sites_U_Fourier.*
;
_definition.scope                       Category
_definition.class                       Set
save_
_atom_sites_moment_Fourier.axes_description
CIF
Describes a user-defined coordinate system for which magnetic
Fourier  modulation components are to be presented.  Only used
when different from those described by
_atom_site_moment_Fourier.axis.
Analogous tags:
msCIF:_atom_sites_displace_Fourier.axes_description
It is not difficult to imagine an
_atom_sites_rot_Fourier.axes_description tag.
Example:
a1 and a2 are respectively the long
                                        molecular axis and the axis normal to
                                        the mean molecular plane.
                                        Extracted from Baudour & Sanquer
                                        [Acta Cryst. (1983), B39, 75-84].
save__atom_sites_moment_Fourier.axes_description

_definition.id                     '_atom_sites_moment_Fourier.axes_description'
_name.category_id                       atom_sites_moment_Fourier
_name.object_id                         axes_description
_definition.update                      2016-05-24

_description.text                       
;
     Describes a user-defined coordinate system for which magnetic
     Fourier  modulation components are to be presented.  Only used
     when different from those described by
     _atom_site_moment_Fourier.axis.

     Analogous tags:
     msCIF:_atom_sites_displace_Fourier.axes_description

     It is not difficult to imagine an
     _atom_sites_rot_Fourier.axes_description tag.
;
_type.contents                          Text
_type.container                         Single

loop_
  _description_example.case
         
;                                       a1 and a2 are respectively the long
                                        molecular axis and the axis normal to
                                        the mean molecular plane.
                                        Extracted from Baudour & Sanquer
                                        [Acta Cryst. (1983), B39, 75-84].
; 

save_
ATOM_TYPE_SCAT
CIF
_atom_type_scat.neutron_magnetic_j0_A1
CIF
First, the parameters are used directly to approximate spatial
averages of  spherical Bessel functions over the electronic wave
functions of unpaired  electrons of the given atom type as a
function of s = sin(theta)/lambda.
<jn(s)> = [A1*e^(-a2*s^2) + B1*e^(-b2*s^2) + C1*e^(-c2*s^2) +
D]*[1 if n=0, s^2 if n=2,4,6]
The <jn(s)> are then combined to determine the spin and orbital
contributions to the magnetic form factor of the atom.  The "e"
parameter is a measure of error in the approximation.
Analogous tags: coreCIF:_atom_site.scat_Cromer_Mann_*
Ref: International Tables for Crystallography (2006). Vol.
C, Sections 4.4.5 and 6.1.2.3 (and references therein).
save__atom_type_scat.neutron_magnetic_j0_A1

_definition.id                          '_atom_type_scat.neutron_magnetic_j0_A1'
_name.category_id                       atom_type_scat
_name.object_id                         neutron_magnetic_j0_A1
_definition.update                      2016-05-24
_type.contents                          Real
_type.container                         Single
_description.text                       
;
     First, the parameters are used directly to approximate spatial
     averages of  spherical Bessel functions over the electronic wave
     functions of unpaired  electrons of the given atom type as a
     function of s = sin(theta)/lambda.
     <jn(s)> = [A1*e^(-a2*s^2) + B1*e^(-b2*s^2) + C1*e^(-c2*s^2) +
     D]*[1 if n=0, s^2 if n=2,4,6]
     The <jn(s)> are then combined to determine the spin and orbital
     contributions to the magnetic form factor of the atom.  The "e"
     parameter is a measure of error in the approximation.

     Analogous tags: coreCIF:_atom_site.scat_Cromer_Mann_*

     Ref: International Tables for Crystallography (2006). Vol.
     C, Sections 4.4.5 and 6.1.2.3 (and references therein).
;

save_
_atom_type_scat.neutron_magnetic_j0_a2
CIF
See definition for _atom_type_scat.neutron_magnetic_j0_A1
save__atom_type_scat.neutron_magnetic_j0_a2

_definition.id                          '_atom_type_scat.neutron_magnetic_j0_a2'
_name.category_id                       atom_type_scat
_name.object_id                         neutron_magnetic_j0_a2
_definition.update                      2016-05-24
_type.contents                          Real
_type.container                         Single
_description.text                       
;
        See definition for _atom_type_scat.neutron_magnetic_j0_A1

;
_units.code                             'angstrom_squared'

save_
_atom_type_scat.neutron_magnetic_j0_B1
CIF
See definition for _atom_type_scat.neutron_magnetic_j0_A1
save__atom_type_scat.neutron_magnetic_j0_B1

_definition.id                          '_atom_type_scat.neutron_magnetic_j0_B1'
_name.category_id                       atom_type_scat
_name.object_id                         neutron_magnetic_j0_B1
_definition.update                      2016-05-24
_type.contents                          Real
_type.container                         Single
_description.text                       
;
        See definition for _atom_type_scat.neutron_magnetic_j0_A1
;

save_
_atom_type_scat.neutron_magnetic_j0_b2
CIF
See definition for _atom_type_scat.neutron_magnetic_j0_A1
save__atom_type_scat.neutron_magnetic_j0_b2

_definition.id                          '_atom_type_scat.neutron_magnetic_j0_b2'
_name.category_id                       atom_type_scat
_name.object_id                         neutron_magnetic_j0_b2
_definition.update                      2016-05-24
_type.contents                          Real
_type.container                         Single
_description.text                       
;
        See definition for _atom_type_scat.neutron_magnetic_j0_A1
;
_units.code                             'angstrom_squared'

save_
_atom_type_scat.neutron_magnetic_j0_C1
CIF
See definition for _atom_type_scat.neutron_magnetic_j0_A1
save__atom_type_scat.neutron_magnetic_j0_C1

_definition.id                          '_atom_type_scat.neutron_magnetic_j0_C1'
_name.category_id                       atom_type_scat
_name.object_id                         neutron_magnetic_j0_C1
_definition.update                      2016-05-24
_type.contents                          Real
_type.container                         Single
_description.text                       
;
        See definition for _atom_type_scat.neutron_magnetic_j0_A1

;

save_
_atom_type_scat.neutron_magnetic_j0_c2
CIF
See definition for _atom_type_scat.neutron_magnetic_j0_A1
save__atom_type_scat.neutron_magnetic_j0_c2

_definition.id                          '_atom_type_scat.neutron_magnetic_j0_c2'
_name.category_id                       atom_type_scat
_name.object_id                         neutron_magnetic_j0_c2
_definition.update                      2016-05-24
_type.contents                          Real
_type.container                         Single
_description.text                       
;
        See definition for _atom_type_scat.neutron_magnetic_j0_A1

;
_units.code                             'angstrom_squared'

save_
_atom_type_scat.neutron_magnetic_j0_D
CIF
See definition for _atom_type_scat.neutron_magnetic_j0_A1
save__atom_type_scat.neutron_magnetic_j0_D

_definition.id                          '_atom_type_scat.neutron_magnetic_j0_D'
_name.category_id                       atom_type_scat
_name.object_id                         neutron_magnetic_j0_D
_definition.update                      2016-05-24
_type.contents                          Real
_type.container                         Single
_description.text                       
;
        See definition for _atom_type_scat.neutron_magnetic_j0_A1
;

save_
_atom_type_scat.neutron_magnetic_j0_e
CIF
See definition for _atom_type_scat.neutron_magnetic_j0_A1
save__atom_type_scat.neutron_magnetic_j0_e

_definition.id                          '_atom_type_scat.neutron_magnetic_j0_e'
_name.category_id                       atom_type_scat
_name.object_id                         neutron_magnetic_j0_e
_definition.update                      2016-05-24
_type.contents                          Real
_type.container                         Single
_description.text                       
;
        See definition for _atom_type_scat.neutron_magnetic_j0_A1

;

save_
_atom_type_scat.neutron_magnetic_j2_A1
CIF
See definition for _atom_type_scat.neutron_magnetic_j0_A1
save__atom_type_scat.neutron_magnetic_j2_A1

_definition.id                          '_atom_type_scat.neutron_magnetic_j2_A1'
_name.category_id                       atom_type_scat
_name.object_id                         neutron_magnetic_j2_A1
_definition.update                      2016-05-24
_type.contents                          Real
_type.container                         Single
_description.text                       
;
        See definition for _atom_type_scat.neutron_magnetic_j0_A1
;

save_
_atom_type_scat.neutron_magnetic_j2_a2
CIF
See definition for _atom_type_scat.neutron_magnetic_j0_A1
save__atom_type_scat.neutron_magnetic_j2_a2

_definition.id                          '_atom_type_scat.neutron_magnetic_j2_a2'
_name.category_id                       atom_type_scat
_name.object_id                         neutron_magnetic_j2_a2
_definition.update                      2016-05-24
_type.contents                          Real
_type.container                         Single
_description.text                       
;
        See definition for _atom_type_scat.neutron_magnetic_j0_A1

;
_units.code                             'angstrom_squared'

save_
_atom_type_scat.neutron_magnetic_j2_B1
CIF
See definition for _atom_type_scat.neutron_magnetic_j0_A1
save__atom_type_scat.neutron_magnetic_j2_B1

_definition.id                          '_atom_type_scat.neutron_magnetic_j2_B1'
_name.category_id                       atom_type_scat
_name.object_id                         neutron_magnetic_j2_B1
_definition.update                      2016-05-24
_type.container                         Single
_type.contents                          Real
_description.text                       
;
        See definition for _atom_type_scat.neutron_magnetic_j0_A1

;

save_
_atom_type_scat.neutron_magnetic_j2_b2
CIF
See definition for _atom_type_scat.neutron_magnetic_j0_A1
save__atom_type_scat.neutron_magnetic_j2_b2

_definition.id                          '_atom_type_scat.neutron_magnetic_j2_b2'
_name.category_id                       atom_type_scat
_name.object_id                         neutron_magnetic_j2_b2
_definition.update                      2016-05-24
_type.contents                          Real
_type.container                         Single
_description.text                       
;
        See definition for _atom_type_scat.neutron_magnetic_j0_A1

;
_units.code                             'angstrom_squared'

save_
_atom_type_scat.neutron_magnetic_j2_C1
CIF
See definition for _atom_type_scat.neutron_magnetic_j0_A1
save__atom_type_scat.neutron_magnetic_j2_C1

_definition.id                          '_atom_type_scat.neutron_magnetic_j2_C1'
_name.category_id                       atom_type_scat
_name.object_id                         neutron_magnetic_j2_C1
_definition.update                      2016-05-24
_type.contents                          Real
_type.container                         Single
_description.text                       
;
        See definition for _atom_type_scat.neutron_magnetic_j0_A1

;

save_
_atom_type_scat.neutron_magnetic_j2_c2
CIF
See definition for _atom_type_scat.neutron_magnetic_j0_A1
save__atom_type_scat.neutron_magnetic_j2_c2

_definition.id                          '_atom_type_scat.neutron_magnetic_j2_c2'
_name.category_id                       atom_type_scat
_name.object_id                         neutron_magnetic_j2_c2
_definition.update                      2016-05-24
_type.contents                          Real
_type.container                         Single
_description.text                       
;
        See definition for _atom_type_scat.neutron_magnetic_j0_A1

;
_units.code                             'angstrom_squared'

save_
_atom_type_scat.neutron_magnetic_j2_D
CIF
See definition for _atom_type_scat.neutron_magnetic_j0_A1
save__atom_type_scat.neutron_magnetic_j2_D

_definition.id                          '_atom_type_scat.neutron_magnetic_j2_D'
_name.category_id                       atom_type_scat
_name.object_id                         neutron_magnetic_j2_D
_definition.update                      2016-05-24
_type.contents                          Real
_type.container                         Single
_description.text                       
;
        See definition for _atom_type_scat.neutron_magnetic_j0_A1
;

save_
_atom_type_scat.neutron_magnetic_j2_e
CIF
See definition for _atom_type_scat.neutron_magnetic_j0_A1
save__atom_type_scat.neutron_magnetic_j2_e

_definition.id                          '_atom_type_scat.neutron_magnetic_j2_e'
_name.category_id                       atom_type_scat
_name.object_id                         neutron_magnetic_j2_e
_definition.update                      2016-05-24
_type.contents                          Real
_type.container                         Single
_description.text                       
;
        See definition for _atom_type_scat.neutron_magnetic_j0_A1
;

save_
_atom_type_scat.neutron_magnetic_j4_A1
CIF
See definition for _atom_type_scat.neutron_magnetic_j0_A1
save__atom_type_scat.neutron_magnetic_j4_A1

_definition.id                          '_atom_type_scat.neutron_magnetic_j4_A1'
_name.category_id                       atom_type_scat
_name.object_id                         neutron_magnetic_j4_A1
_definition.update                      2016-05-24
_type.contents                          Real
_type.container                         Single
_description.text                       
;
        See definition for _atom_type_scat.neutron_magnetic_j0_A1

;

save_
_atom_type_scat.neutron_magnetic_j4_a2
CIF
See definition for _atom_type_scat.neutron_magnetic_j0_A1
save__atom_type_scat.neutron_magnetic_j4_a2

_definition.id                          '_atom_type_scat.neutron_magnetic_j4_a2'
_name.category_id                       atom_type_scat
_name.object_id                         neutron_magnetic_j4_a2
_definition.update                      2016-05-24
_type.contents                          Real
_type.container                         Single
_description.text                       
;
        See definition for _atom_type_scat.neutron_magnetic_j0_A1

;
_units.code                             'angstrom_squared'

save_
_atom_type_scat.neutron_magnetic_j4_B1
CIF
See definition for _atom_type_scat.neutron_magnetic_j0_A1
save__atom_type_scat.neutron_magnetic_j4_B1

_definition.id                          '_atom_type_scat.neutron_magnetic_j4_B1'
_name.category_id                       atom_type_scat
_name.object_id                         neutron_magnetic_j4_B1
_definition.update                      2016-05-24
_type.contents                          Real
_type.container                         Single
_description.text                       
;
        See definition for _atom_type_scat.neutron_magnetic_j0_A1
;

save_
_atom_type_scat.neutron_magnetic_j4_b2
CIF
See definition for _atom_type_scat.neutron_magnetic_j0_A1
save__atom_type_scat.neutron_magnetic_j4_b2

_definition.id                          '_atom_type_scat.neutron_magnetic_j4_b2'
_name.category_id                       atom_type_scat
_name.object_id                         neutron_magnetic_j4_b2
_definition.update                      2016-05-24
_type.contents                          Real
_type.container                         Single
_description.text                       
;
        See definition for _atom_type_scat.neutron_magnetic_j0_A1

;
_units.code                             'angstrom_squared'

save_
_atom_type_scat.neutron_magnetic_j4_C1
CIF
See definition for _atom_type_scat.neutron_magnetic_j0_A1
save__atom_type_scat.neutron_magnetic_j4_C1

_definition.id                          '_atom_type_scat.neutron_magnetic_j4_C1'
_name.category_id                       atom_type_scat
_name.object_id                         neutron_magnetic_j4_C1
_definition.update                      2016-05-24
_type.contents                          Real
_type.container                         Single
_description.text                       
;
        See definition for _atom_type_scat.neutron_magnetic_j0_A1
;


save_
_atom_type_scat.neutron_magnetic_j4_c2
CIF
See definition for _atom_type_scat.neutron_magnetic_j0_A1
save__atom_type_scat.neutron_magnetic_j4_c2

_definition.id                          '_atom_type_scat.neutron_magnetic_j4_c2'
_name.category_id                       atom_type_scat
_name.object_id                         neutron_magnetic_j4_c2
_definition.update                      2016-05-24
_type.contents                          Real
_type.container                         Single
_description.text                       
;
        See definition for _atom_type_scat.neutron_magnetic_j0_A1
;
_units.code                             'angstrom_squared'

save_
_atom_type_scat.neutron_magnetic_j4_D
CIF
See definition for _atom_type_scat.neutron_magnetic_j0_A1
save__atom_type_scat.neutron_magnetic_j4_D

_definition.id                          '_atom_type_scat.neutron_magnetic_j4_D'
_name.category_id                       atom_type_scat
_name.object_id                         neutron_magnetic_j4_D
_definition.update                      2016-05-24
_type.contents                          Real
_type.container                         Single
_description.text                       
;
        See definition for _atom_type_scat.neutron_magnetic_j0_A1
;

save_
_atom_type_scat.neutron_magnetic_j4_e
CIF
See definition for _atom_type_scat.neutron_magnetic_j0_A1
save__atom_type_scat.neutron_magnetic_j4_e

_definition.id                          '_atom_type_scat.neutron_magnetic_j4_e'
_name.category_id                       atom_type_scat
_name.object_id                         neutron_magnetic_j4_e
_definition.update                      2016-05-24
_type.contents                          Real
_type.container                         Single
_description.text                       
;
        See definition for _atom_type_scat.neutron_magnetic_j0_A1
;

save_
_atom_type_scat.neutron_magnetic_j6_A1
CIF
See definition for _atom_type_scat.neutron_magnetic_j0_A1
save__atom_type_scat.neutron_magnetic_j6_A1

_definition.id                          '_atom_type_scat.neutron_magnetic_j6_A1'
_name.category_id                       atom_type_scat
_name.object_id                         neutron_magnetic_j6_A1
_definition.update                      2016-05-24
_type.contents                          Real
_type.container                         Single
_description.text                       
;
        See definition for _atom_type_scat.neutron_magnetic_j0_A1
;

save_
_atom_type_scat.neutron_magnetic_j6_a2
CIF
See definition for _atom_type_scat.neutron_magnetic_j0_A1
save__atom_type_scat.neutron_magnetic_j6_a2

_definition.id                          '_atom_type_scat.neutron_magnetic_j6_a2'
_name.category_id                       atom_type_scat
_name.object_id                         neutron_magnetic_j6_a2
_definition.update                      2016-05-24
_type.contents                          Real
_type.container                         Single
_description.text                       
;
        See definition for _atom_type_scat.neutron_magnetic_j0_A1
;
_units.code                             'angstrom_squared'

save_
_atom_type_scat.neutron_magnetic_j6_B1
CIF
See definition for _atom_type_scat.neutron_magnetic_j0_A1
save__atom_type_scat.neutron_magnetic_j6_B1

_definition.id                          '_atom_type_scat.neutron_magnetic_j6_B1'
_name.category_id                       atom_type_scat
_name.object_id                         neutron_magnetic_j6_B1
_definition.update                      2016-05-24
_type.contents                          Real
_type.container                         Single
_description.text                       
;
        See definition for _atom_type_scat.neutron_magnetic_j0_A1

;

save_
_atom_type_scat.neutron_magnetic_j6_b2
CIF
See definition for _atom_type_scat.neutron_magnetic_j0_A1
save__atom_type_scat.neutron_magnetic_j6_b2

_definition.id                          '_atom_type_scat.neutron_magnetic_j6_b2'
_name.category_id                       atom_type_scat
_name.object_id                         neutron_magnetic_j6_b2
_definition.update                      2016-05-24
_type.contents                          Real
_type.container                         Single
_description.text                       
;
        See definition for _atom_type_scat.neutron_magnetic_j0_A1

;
_units.code                             'angstrom_squared'

save_
_atom_type_scat.neutron_magnetic_j6_C1
CIF
See definition for _atom_type_scat.neutron_magnetic_j0_A1
save__atom_type_scat.neutron_magnetic_j6_C1

_definition.id                          '_atom_type_scat.neutron_magnetic_j6_C1'
_name.category_id                       atom_type_scat
_name.object_id                         neutron_magnetic_j6_C1
_definition.update                      2016-05-24
_type.contents                          Real
_type.container                         Single
_description.text                       
;
        See definition for _atom_type_scat.neutron_magnetic_j0_A1
;

save_
_atom_type_scat.neutron_magnetic_j6_c2
CIF
See definition for _atom_type_scat.neutron_magnetic_j0_A1
save__atom_type_scat.neutron_magnetic_j6_c2

_definition.id                          '_atom_type_scat.neutron_magnetic_j6_c2'
_name.category_id                       atom_type_scat
_name.object_id                         neutron_magnetic_j6_c2
_definition.update                      2016-05-24
_type.contents                          Real
_type.container                         Single
_description.text                       
;
        See definition for _atom_type_scat.neutron_magnetic_j0_A1
;
_units.code                             'angstrom_squared'

save_
_atom_type_scat.neutron_magnetic_j6_D
CIF
See definition for _atom_type_scat.neutron_magnetic_j0_A1
save__atom_type_scat.neutron_magnetic_j6_D

_definition.id                          '_atom_type_scat.neutron_magnetic_j6_D'
_name.category_id                       atom_type_scat
_name.object_id                         neutron_magnetic_j6_D
_definition.update                      2016-05-24
_type.contents                          Real
_type.container                         Single
_description.text                       
;
        See definition for _atom_type_scat.neutron_magnetic_j0_A1

;

save_
_atom_type_scat.neutron_magnetic_j6_e
CIF
See definition for _atom_type_scat.neutron_magnetic_j0_A1
save__atom_type_scat.neutron_magnetic_j6_e

_definition.id                          '_atom_type_scat.neutron_magnetic_j6_e'
_name.category_id                       atom_type_scat
_name.object_id                         neutron_magnetic_j6_e
_definition.update                      2016-05-24
_type.contents                          Real
_type.container                         Single
_description.text                       
;
        See definition for _atom_type_scat.neutron_magnetic_j0_A1

;

save_
_atom_type_scat.neutron_magnetic_source
CIF
Reference to the source of magnetic neutron scattering factors
for a given atom type.
Analogous tags: coreCIF:_atom_site.scat_source
Example:
International Tables for Crystallography (2006). Vol. C, Section 4.4.5.
save__atom_type_scat.neutron_magnetic_source

_definition.id                         '_atom_type_scat.neutron_magnetic_source'
_name.category_id                       atom_type_scat
_name.object_id                         neutron_magnetic_source
_definition.update                      2016-05-24

_description.text                       
;
     Reference to the source of magnetic neutron scattering factors
     for a given atom type.

     Analogous tags: coreCIF:_atom_site.scat_source
;
_type.contents                          Text
_type.container                         Single

loop_
  _description_example.case
         
;
International Tables for Crystallography (2006). Vol. C, Section 4.4.5.
; 

save_
PARENT_PROPAGATION_VECTOR
CIF
This looped category allows for the presentation of the
fundamental magnetic wave vectors in the setting of the parent
structure.  In general, there can be more than one fundamental
magnetic wave vector. See the PARENT_SPACE_GROUP category for
more information about parent space groups.
Example:
loop_
      _parent_propagation_vector.id
      _parent_propagation_vector.kxkykz
        k1  [0 0 1]
        k2  [0 1 0]
        k3  [1 0 0]
save_parent_propagation_vector

_definition.id                          parent_propagation_vector
_name.category_id                       MAGNETIC
_name.object_id                         parent_propagation_vector
_definition.update                      2016-06-09
_description.text                       
;
     This looped category allows for the presentation of the
     fundamental magnetic wave vectors in the setting of the parent
     structure.  In general, there can be more than one fundamental
     magnetic wave vector. See the PARENT_SPACE_GROUP category for
     more information about parent space groups.
;
_definition.scope                       Category
_definition.class                       Loop
_category.key_id                        '_parent_propagation_vector.id'
loop_
  _category_key.name                    '_parent_propagation_vector.id'
  
loop_
  _description_example.case
         
;
    loop_
      _parent_propagation_vector.id
      _parent_propagation_vector.kxkykz
        k1  [0 0 1]
        k2  [0 1 0]
        k3  [1 0 0]
;
save_
_parent_propagation_vector.id
CIF
A code that uniquely identifies a fundamental magnetic propagation vector.
save__parent_propagation_vector.id

_definition.id                          '_parent_propagation_vector.id'
_name.category_id                       parent_propagation_vector
_name.object_id                         id
_definition.update                      2016-06-09
_description.text                       
;
    A code that uniquely identifies a fundamental magnetic propagation vector.
;
_type.contents                          Text
_type.container                         Single
_type.purpose                           Key

save_
_parent_propagation_vector.kxkykz
CIF
A fundamental magnetic propagation vector in unitless reciprocal-lattice
units of the parent space group setting.
save__parent_propagation_vector.kxkykz

_definition.id                          '_parent_propagation_vector.kxkykz'
_name.category_id                       parent_propagation_vector
_name.object_id                         kxkykz
_definition.update                      2016-06-09
_description.text                       
;
     A fundamental magnetic propagation vector in unitless reciprocal-lattice
     units of the parent space group setting.
;
_type.contents                          Real
_type.container                         Matrix
_type.dimension                        [3]

save_
PARENT_SPACE_GROUP
CIF
This category provides information about the space group and
setting of  a non-magnetic parent structure which is related to
the present magnetic  structure by a group-subgroup relationship.
In general, the choice of a parent structure is not unique; it
could be the lowest-symmetry non-magnetic structure obtained by
simply setting all magnetic moments to zero, or a higher-symmetry
approximation to this structure which idealizes some of the
atomic coordinates.  The designation of a parent  structure is
common but optional for a magnetic-structure description. This
category could also be used to designate high-symmetry parent
structures  of low-symmetry non-magnetic structures. As an
alternative to this category, one can define a parent structure
in a separate data block, and then relate the parent and child
space-group settings by conveying an appropriate inter-data-block
basis transformation in each data block.
Analogous tags: none
save_parent_space_group

_definition.id                          parent_space_group
_name.category_id                       MAGNETIC
_name.object_id                         parent_space_group
_definition.update                      2016-06-09
_description.text                       
;
     This category provides information about the space group and
     setting of  a non-magnetic parent structure which is related to
     the present magnetic  structure by a group-subgroup relationship.
     In general, the choice of a parent structure is not unique; it
     could be the lowest-symmetry non-magnetic structure obtained by
     simply setting all magnetic moments to zero, or a higher-symmetry
     approximation to this structure which idealizes some of the
     atomic coordinates.  The designation of a parent  structure is
     common but optional for a magnetic-structure description. This
     category could also be used to designate high-symmetry parent
     structures  of low-symmetry non-magnetic structures. As an
     alternative to this category, one can define a parent structure
     in a separate data block, and then relate the parent and child
     space-group settings by conveying an appropriate inter-data-block
     basis transformation in each data block.

     Analogous tags: none
;
_definition.scope                       Category
_definition.class                       Set

save_
_parent_space_group.child_transform_Pp_abc
CIF
This item specifies the transformation (P,p) of the basis vectors
and origin of the present setting of the parent space group to
those of the present setting of the  child space group. The basis
vectors (a',b',c') of the child are described as linear
combinations  of the basis vectors (a,b,c) of the parent, and the
origin shift (ox,oy,oz)  is displayed in the lattice coordinates
of the parent. The Jones faithful notation and possible values
are identical to those of  symCIF:_space_group.transform_Pp_abc,
except that the point and translational components are separated
by a semicolon.  If the child structure is incommensurate, the
transformation applies to the present setting of the basic
space group of the incommensurate structure.
Analogous tags: symCIF:_space_group.transform_Pp_abc
save__parent_space_group.child_transform_Pp_abc

_definition.id                      '_parent_space_group.child_transform_Pp_abc'
_name.category_id                       parent_space_group
_name.object_id                         child_transform_Pp_abc
_definition.update                      2023-01-17
_description.text                       
;
     This item specifies the transformation (P,p) of the basis vectors
     and origin of the present setting of the parent space group to
     those of the present setting of the  child space group. The basis
     vectors (a',b',c') of the child are described as linear
     combinations  of the basis vectors (a,b,c) of the parent, and the
     origin shift (ox,oy,oz)  is displayed in the lattice coordinates
     of the parent. The Jones faithful notation and possible values
     are identical to those of  symCIF:_space_group.transform_Pp_abc,
     except that the point and translational components are separated
     by a semicolon.  If the child structure is incommensurate, the
     transformation applies to the present setting of the basic
     space group of the incommensurate structure.

     Analogous tags: symCIF:_space_group.transform_Pp_abc
;
_type.contents                          Real
_type.dimension                        [4,4]
_type.container                         Matrix
_type.purpose                           Number
_type.source                            Assigned

save_
_parent_space_group.IT_number
CIF
Analogous tags: Perfectly analogous to
symCIF:_space_group.IT_number except that it applies to the
parent structure.
save__parent_space_group.IT_number

_definition.id                          '_parent_space_group.IT_number'
_name.category_id                       parent_space_group
_name.object_id                         IT_number
_definition.update                      2016-06-09
_description.text                       
;
     Analogous tags: Perfectly analogous to
     symCIF:_space_group.IT_number except that it applies to the
     parent structure.
;
_type.contents                          Text
_type.container                         Single


save_
_parent_space_group.name_H-M_alt
CIF
Analogous tags: Perfectly analogous to
symCIF:_space_group.name_H-M_alt except that it applies
to the parent structure.
save__parent_space_group.name_H-M_alt

_definition.id                          '_parent_space_group.name_H-M_alt'
_name.category_id                       parent_space_group
_name.object_id                         name_H-M_alt
_definition.update                      2016-06-09
_description.text                       
;
     Analogous tags: Perfectly analogous to
     symCIF:_space_group.name_H-M_alt except that it applies
     to the parent structure.
;
_type.contents                          Text
_type.container                         Single


save_
_parent_space_group.reference_setting
CIF
Analogous tags: Perfectly analogous to
symCIF:_space_group.reference_setting except that it applies to
the parent structure.
save__parent_space_group.reference_setting

_definition.id                          '_parent_space_group.reference_setting'
_name.category_id                       parent_space_group
_name.object_id                         reference_setting
_definition.update                      2016-06-09
_description.text                       
;
     Analogous tags: Perfectly analogous to
     symCIF:_space_group.reference_setting except that it applies to
     the parent structure.
;
_type.contents                          Text
_type.container                         Single

save_
_parent_space_group.transform_Pp_abc
CIF
Analogous tags: Notation and usage is analogous to
symCIF:_space_group.transform_Pp_abc except that it applies to
the parent structure, and that the point and translational
components are separated by a semicolon.
save__parent_space_group.transform_Pp_abc

_definition.id                          '_parent_space_group.transform_Pp_abc'
_name.category_id                       parent_space_group
_name.object_id                         transform_Pp_abc
_definition.update                      2016-06-09
_description.text                       
;
     Analogous tags: Notation and usage is analogous to
     symCIF:_space_group.transform_Pp_abc except that it applies to
     the parent structure, and that the point and translational
     components are separated by a semicolon.
;
_type.contents                          Real
_type.container                         Matrix
_type.dimension                        [4,4]
_type.purpose                           Number
_type.source                            Assigned

save_
SPACE_GROUP_MAGN
CIF
The data items in this category provide identifying and/or
descriptive information about the relevant magnetic symmetry
group and setting.
save_SPACE_GROUP_MAGN

_definition.id                          space_group_magn
_name.category_id                       MAGNETIC
_name.object_id                         space_group_magn
_definition.update                      2016-10-10
_description.text                       
;
        The data items in this category provide identifying and/or
        descriptive information about the relevant magnetic symmetry
        group and setting.

;
_definition.scope                       Category
_definition.class                       Set

save_
_space_group_magn.name_BNS
CIF
See _space_group_magn_number_OG for a description of magnetic
space groups (MSGs).
The Belov-Neronova-Smirnova (BNS) symbol for a MSG is based on
the short Hermann-Mauguin space-group symbol of non-magnetic
space group F for MSGs of types 1-3 or its subgroup D for MSGs of
type 4. For a type-1 MSG, the symbol for the MSG is identical
with the unprimed symbol of F.  For a type-2 MSG, its symbol is
the symbol of the space group F followed by 1'.  For a type-3
MSG, one starts with the symbol for F and then primes any
non-translational  generators whose corresponding MSG elements are
time reversed. For a type-4 MSG, the non-translational generators
are never primed. A subscript always appears on the first
(lattice) character of the symbol of a type-4 MSG, and
communicates that a pure time-reversal element is included in the
point group of the MSG. The value of this subscript indicates the
magnetic lattice of the MSG, and specifically indicates the
translational part of the generator whose point part is the pure
time reversal. Note that OG and BNS symbols are identical for
MSGs of types 1-3, but differ substantially  for MSGs of type 4.
Analogous tags: symCIF:_space_group.name_H-M_ref
Ref: 'Magnetic Group Tables' by D.B. Litvin at
http://www.iucr.org/publ/978-0-9553602-2-0. ISO-MAG tables of H.T.
Stokes and B.J. Campbell at http://iso.byu.edu.
Examples:
P 1
P 1 1'
P_S 1
P -1
P -1 1'
P -1'
P_2s -1
I a' -3 d'
save__space_group_magn.name_BNS

_definition.id                          '_space_group_magn.name_BNS'
_name.category_id                       space_group_magn
_name.object_id                         name_BNS
_definition.update                      2016-05-24

_description.text                       
;
     See _space_group_magn_number_OG for a description of magnetic
     space groups (MSGs).
     The Belov-Neronova-Smirnova (BNS) symbol for a MSG is based on
     the short Hermann-Mauguin space-group symbol of non-magnetic
     space group F for MSGs of types 1-3 or its subgroup D for MSGs of
     type 4. For a type-1 MSG, the symbol for the MSG is identical
     with the unprimed symbol of F.  For a type-2 MSG, its symbol is
     the symbol of the space group F followed by 1'.  For a type-3
     MSG, one starts with the symbol for F and then primes any
     non-translational  generators whose corresponding MSG elements are
     time reversed. For a type-4 MSG, the non-translational generators
     are never primed. A subscript always appears on the first
     (lattice) character of the symbol of a type-4 MSG, and
     communicates that a pure time-reversal element is included in the
     point group of the MSG. The value of this subscript indicates the
     magnetic lattice of the MSG, and specifically indicates the
     translational part of the generator whose point part is the pure
     time reversal. Note that OG and BNS symbols are identical for
     MSGs of types 1-3, but differ substantially  for MSGs of type 4.

     Analogous tags: symCIF:_space_group.name_H-M_ref

     Ref: 'Magnetic Group Tables' by D.B. Litvin at
     http://www.iucr.org/publ/978-0-9553602-2-0. ISO-MAG tables of H.T.
     Stokes and B.J. Campbell at http://iso.byu.edu.
;
_type.contents                          Text
_type.container                         Single

loop_
  _description_example.case
         "P 1"     
         "P 1 1'"  
         "P_S 1"   
         "P -1"   
         "P -1 1'"           
         "P -1'"   
         "P_2s -1"           
         "I a' -3 d'" 

save_
_space_group_magn.name_OG
CIF
See _space_group_magn.number_OG for more information on magnetic
space groups (MSGs). The Opechowski-Guccione (OG) symbol for an
MSG is based on the short Hermann-Mauguin space-group symbol of
non-magnetic space group F.   For a type-1 MSG, the OG symbol for
the MSG is identical with the unprimed symbol of F.  For a type-2
MSG, the OG symbol is the symbol of the non-magnetic space group
F followed by 1'.  For a type-3 or type-4 MSG, the OG symbol is
constructed by starting with the symbol for F and then  priming
the symbols of any non-translational generators whose
corresponding MSG elements are  time reversed.  When a
non-translational generator symbol could potentially represent both
time-reversed and non-time-reversed symmetry elements, the prime
placement is as described  in the Magnetic Group Tables of
Litvin. A subscript always appears on the first (lattice)
character of the symbol of a type-4 MSG, and communicates that a
pure time-reversal element is included in the point group of the
MSG. The value of this subscript indicates the magnetic lattice
of the MSG. Note that OG and BNS symbols are identical for MSGs
of types 1-3, but differ substantially  for MSGs of type 4.
Analogous tags: symCIF:_space_group.name_H-M_ref
Ref: 'Magnetic Group Tables' by D.B. Litvin at
http://www.iucr.org/publ/978-0-9553602-2-0. ISO-MAG tables of H.T.
Stokes and B.J. Campbell at http://iso.byu.edu.
Examples:
P 1
P 1 1'
P_S 1
P -1
P -1 1'
P -1'
P_2s -1
I a' -3' d'
save__space_group_magn.name_OG

_definition.id                          '_space_group_magn.name_OG'
_name.category_id                       space_group_magn
_name.object_id                         name_OG
_definition.update                      2016-05-24

_description.text                       
;
     See _space_group_magn.number_OG for more information on magnetic
     space groups (MSGs). The Opechowski-Guccione (OG) symbol for an
     MSG is based on the short Hermann-Mauguin space-group symbol of
     non-magnetic space group F.   For a type-1 MSG, the OG symbol for
     the MSG is identical with the unprimed symbol of F.  For a type-2
     MSG, the OG symbol is the symbol of the non-magnetic space group
     F followed by 1'.  For a type-3 or type-4 MSG, the OG symbol is
     constructed by starting with the symbol for F and then  priming
     the symbols of any non-translational generators whose
     corresponding MSG elements are  time reversed.  When a
     non-translational generator symbol could potentially represent both
     time-reversed and non-time-reversed symmetry elements, the prime
     placement is as described  in the Magnetic Group Tables of
     Litvin. A subscript always appears on the first (lattice)
     character of the symbol of a type-4 MSG, and communicates that a
     pure time-reversal element is included in the point group of the
     MSG. The value of this subscript indicates the magnetic lattice
     of the MSG. Note that OG and BNS symbols are identical for MSGs
     of types 1-3, but differ substantially  for MSGs of type 4.

     Analogous tags: symCIF:_space_group.name_H-M_ref

     Ref: 'Magnetic Group Tables' by D.B. Litvin at
     http://www.iucr.org/publ/978-0-9553602-2-0. ISO-MAG tables of H.T.
     Stokes and B.J. Campbell at http://iso.byu.edu.
;
_type.contents                          Text
_type.container                         Single

loop_
  _description_example.case
         "P 1"    
         "P 1 1'"  
         "P_S 1"   
         "P -1"    
         "P -1 1'"           
         "P -1'"   
         "P_2s -1"           
         "I a' -3' d'" 

save_
_space_group_magn.number_BNS
CIF
See _space_group_magn.number_OG for a description of magnetic
space groups (MSGs). The Belov-Neronova-Smirnova (BNS) number for
an MSG is composed of two positive integers separated by a
period. The first integer lies in the range [1-230] and indicates
the non-magnetic space group F for MSGs of types 1-3 or the
non-magnetic space group of the subgroup D for MSGs of type 4.  The
second integer is sequential over all MSGs associated  with the
same crystal family.
There are 1651 distinct equivalence classes of MSGs, each of
which has a unique BNS number. These equivalence classes are most
accurately referred to as magnetic space-group "types",
following the usage in the International Tables for Crystallography.
But the word "type"  is also commonly used to
indicate the four-fold classification of MSGs presented above.
To avoid confusion, the word "type" is only used in the latter
sense here.
Analogous tags: symCIF:_space_group.number_IT
Ref: 'Magnetic Group Tables' by D.B. Litvin at
http://www.iucr.org/publ/978-0-9553602-2-0. ISO-MAG tables of H.T.
Stokes and B.J. Campbell at http://iso.byu.edu.
Examples:
1.1
1.2
1.3
2.4
2.5
2.6
2.7
230.149
save__space_group_magn.number_BNS

_definition.id                          '_space_group_magn.number_BNS'
_name.category_id                       space_group_magn
_name.object_id                         number_BNS
_definition.update                      2016-10-10

_description.text                       
;
     See _space_group_magn.number_OG for a description of magnetic
     space groups (MSGs). The Belov-Neronova-Smirnova (BNS) number for
     an MSG is composed of two positive integers separated by a
     period. The first integer lies in the range [1-230] and indicates
     the non-magnetic space group F for MSGs of types 1-3 or the
     non-magnetic space group of the subgroup D for MSGs of type 4.  The
     second integer is sequential over all MSGs associated  with the
     same crystal family.
     There are 1651 distinct equivalence classes of MSGs, each of
     which has a unique BNS number. These equivalence classes are most
     accurately referred to as magnetic space-group "types",
     following the usage in the International Tables for Crystallography.
     But the word "type"  is also commonly used to
     indicate the four-fold classification of MSGs presented above.
     To avoid confusion, the word "type" is only used in the latter
     sense here.

     Analogous tags: symCIF:_space_group.number_IT

     Ref: 'Magnetic Group Tables' by D.B. Litvin at
     http://www.iucr.org/publ/978-0-9553602-2-0. ISO-MAG tables of H.T.
     Stokes and B.J. Campbell at http://iso.byu.edu.
;
_type.contents                          Text
_type.container                         Single

loop_
  _description_example.case
         1.1       
         1.2       
         1.3       
         2.4       
         2.5       
         2.6       
         2.7       
         230.149 

save_
_space_group_magn.OG_wavevector_kxkykz
CIF
The magnetic propagation vector (k) of the OG(k)-supercell
description, which determines the time-reversal component of each
translation vector (x) of the OG lattice (including the centering
vectors if a centered setting is used) according to the expression
cos(2*pi*k.x) = +/-1, where x is defined in the unitless coordinates
of the direct-space OG lattice and k is defined in the unitless
coordinates of the corresponding reciprocal-space lattice.  If 2*k.x
has a non-integer value for any OG lattice (or centering) translation,
the definition of k is incorrect.  The value of OG wave vector is
essential to the OG(k) description of the magnetic space group
symmetry; it cannot be omitted from such a description without
ambiguity.
save__space_group_magn.OG_wavevector_kxkykz

_definition.id                          '_space_group_magn.OG_wavevector_kxkykz'
_name.category_id                       space_group_magn
_name.object_id                         OG_wavevector_kxkykz
_definition.update                      2016-05-24
_description.text                       
;
    The magnetic propagation vector (k) of the OG(k)-supercell
    description, which determines the time-reversal component of each
    translation vector (x) of the OG lattice (including the centering
    vectors if a centered setting is used) according to the expression
    cos(2*pi*k.x) = +/-1, where x is defined in the unitless coordinates
    of the direct-space OG lattice and k is defined in the unitless
    coordinates of the corresponding reciprocal-space lattice.  If 2*k.x
    has a non-integer value for any OG lattice (or centering) translation,
    the definition of k is incorrect.  The value of OG wave vector is
    essential to the OG(k) description of the magnetic space group
    symmetry; it cannot be omitted from such a description without
    ambiguity.
;
_type.container                         Matrix
_type.contents                          Real
_type.dimension                         [3]
_type.purpose                           Number

save_
_space_group_magn.point_group_name
CIF
Any magnetic point group (MPG) can be constructed by starting
with a non-magnetic point group P, and then by adding a time-reversal
component to some or all or none of its elements. For a
type-1 MPG, M = P, there are no time-reversed elements. For a
type-2 MPG, M = P + P1', there is both a time-reversed and a
non-time-reversed  copy of each element in P. For a type-3 MPG,
M = Q + (P - Q)1', there is a subgroup Q of P of index 2 whose
elements are not time reversed, whereas the remaining elements
in P-Q are time reversed. For a type-1 MPG, the symbol is identical
with the symbol for the non-magnetic point group P. For a type-2 MPG,
the symbol is the symbol for P followed by the symbol 1'. For a
type-3 MPG, the symbol is that of P with a prime added to each
time-reversed generator.
Analogous tags: symCIF:_space_group.point_group_H-M
Ref: 'Magnetic Group Tables' by D.B. Litvin at
http://www.iucr.org/publ/978-0-9553602-2-0
Examples:
1
1 1'
-1
-1 1'
-1'
4 m m
4' m' m
4' m m'
save__space_group_magn.point_group_name

_definition.id                          '_space_group_magn.point_group_name'
_name.category_id                       space_group_magn
_name.object_id                         point_group_name
_definition.update                      2016-05-24

_description.text                       
;
     Any magnetic point group (MPG) can be constructed by starting
     with a non-magnetic point group P, and then by adding a time-reversal
     component to some or all or none of its elements. For a
     type-1 MPG, M = P, there are no time-reversed elements. For a
     type-2 MPG, M = P + P1', there is both a time-reversed and a
     non-time-reversed  copy of each element in P. For a type-3 MPG,
     M = Q + (P - Q)1', there is a subgroup Q of P of index 2 whose
     elements are not time reversed, whereas the remaining elements
     in P-Q are time reversed. For a type-1 MPG, the symbol is identical
     with the symbol for the non-magnetic point group P. For a type-2 MPG,
     the symbol is the symbol for P followed by the symbol 1'. For a
     type-3 MPG, the symbol is that of P with a prime added to each
     time-reversed generator.

     Analogous tags: symCIF:_space_group.point_group_H-M

     Ref: 'Magnetic Group Tables' by D.B. Litvin at
     http://www.iucr.org/publ/978-0-9553602-2-0 
;
_type.contents                          Text
_type.container                         Single

loop_
  _description_example.case
         1         
         "1 1'"    
         -1        
         "-1 1'"   
         "-1'"     
         "4 m m"  
         "4' m' m"           
         "4' m m'" 

save_
_space_group_magn.point_group_number
CIF
Each of the 122 crystallographic magnetic point groups can be
associated with exactly one crystallographic non-magnetic space
group by removing the time-reversal component from each group
operator.  The identifying number for each such group is taken
from the "Survey of 3-dimensional magnetic point group types"
from the "Magnetic Group Tables" of D.B. Litvin.  This number is
composed of three integers: (1) an integer from 1 to 32 that
corresponds to the non-magnetic point group; (2) an integer that
runs sequentially over each of the magnetic point groups
associated with a given non-magnetic point group; and (3) a
redundant third integer that runs from 1 to 122.
Ref: 'Magnetic Group Tables' by D.B. Litvin at
http://www.iucr.org/publ/978-0-9553602-2-0
Examples:
1.1.1
32.5.122
save__space_group_magn.point_group_number

_definition.id                          '_space_group_magn.point_group_number'
_name.category_id                       space_group_magn
_name.object_id                         point_group_number
_definition.update                      2016-10-10
_description.text                      
;

     Each of the 122 crystallographic magnetic point groups can be
     associated with exactly one crystallographic non-magnetic space
     group by removing the time-reversal component from each group
     operator.  The identifying number for each such group is taken
     from the "Survey of 3-dimensional magnetic point group types"
     from the "Magnetic Group Tables" of D.B. Litvin.  This number is
     composed of three integers: (1) an integer from 1 to 32 that
     corresponds to the non-magnetic point group; (2) an integer that
     runs sequentially over each of the magnetic point groups
     associated with a given non-magnetic point group; and (3) a
     redundant third integer that runs from 1 to 122.

     Ref: 'Magnetic Group Tables' by D.B. Litvin at
     http://www.iucr.org/publ/978-0-9553602-2-0
;
_type.contents                          Text
_type.container                         Single
loop_
  _description_example.case
    "1.1.1"
    "32.5.122"

save_
_space_group_magn.ssg_name
CIF
The Belov-Neronova-Smirnova (BNS) symbol for a magnetic
superspace group (MSSG) is based on the symbol of the
non-magnetic superspace group (SSG) obtained by eliminating all
time-reversed operators from the group, as listed in the ISO(3+d)D
tables of Stokes and Campbell. If the magnetic basic space group
(MBSG) is of type-1 or type-3 (also known as type-3a), its BNS symbol
merely replaces that of the basic space-group (BSG).  If the MBSG
is of type-2 or type-4  (also known as type-3b), an additional
phase-shift symbol associated with the time-reversal generator is added
to each modulation vector.  If the MBSG is of type-4, the BNS
symbol of the MSSG is further modified to explicitly show the
time-reversal generator (1') at the end, and the anti-centering
subscript is moved from the lattice symbol to the 1' so as to
clearly indicate the fractional external-space translation of
this generator.
The examples are based on SSG 47.1.9.3 Pmmm(0,0,g)ss0 in (3+1)D.
Analogous tags: msCIF:_space_group.ssg_name
Ref: ISO-MAG tables of H.T. Stokes and B.J. Campbell at
http://iso.byu.edu. ISO(3+d)D tables of H.T. Stokes and B.J.
Campbell at http://iso.byu.edu.
Examples:
Pmmm(0,0,g)ss0
Pmmm1'(0,0,g)ss00
Pmmm1'(0,0,g)ss0s
Pm'm'm(0,0,g)ss0
Pmmm1'_a(0,0,g)ss00
Pmmm1'_a(0,0,g)ss0s
save__space_group_magn.ssg_name

_definition.id                          '_space_group_magn.ssg_name'
_name.category_id                       space_group_magn
_name.object_id                         ssg_name
_definition.update                      2016-10-10

_description.text                       
;
     The Belov-Neronova-Smirnova (BNS) symbol for a magnetic
     superspace group (MSSG) is based on the symbol of the
     non-magnetic superspace group (SSG) obtained by eliminating all
     time-reversed operators from the group, as listed in the ISO(3+d)D
     tables of Stokes and Campbell. If the magnetic basic space group
     (MBSG) is of type-1 or type-3 (also known as type-3a), its BNS symbol
     merely replaces that of the basic space-group (BSG).  If the MBSG
     is of type-2 or type-4  (also known as type-3b), an additional
     phase-shift symbol associated with the time-reversal generator is added
     to each modulation vector.  If the MBSG is of type-4, the BNS
     symbol of the MSSG is further modified to explicitly show the
     time-reversal generator (1') at the end, and the anti-centering
     subscript is moved from the lattice symbol to the 1' so as to
     clearly indicate the fractional external-space translation of
     this generator.
     The examples are based on SSG 47.1.9.3 Pmmm(0,0,g)ss0 in (3+1)D.

     Analogous tags: msCIF:_space_group.ssg_name

     Ref: ISO-MAG tables of H.T. Stokes and B.J. Campbell at
     http://iso.byu.edu. ISO(3+d)D tables of H.T. Stokes and B.J.
     Campbell at http://iso.byu.edu.
;
_type.contents                          Text
_type.container                         Single

loop_
  _description_example.case
  _description_example.detail
          "Pmmm(0,0,g)ss0"      "type-1 MBSG Pmmm"           
          "Pmmm1'(0,0,g)ss00"
;                                type-2 MBSG Pmmm1', with no basic-cell or
                                 modulated moments allowed
;
          "Pmmm1'(0,0,g)ss0s" 
;                                type-2 MBSG Pmmm1', with magnetic modulations
                                 allowed, but not basic-cell moments 
;
          "Pm'm'm(0,0,g)ss0"    "type-3 MBSG Pm'm'm"         
          "Pmmm1'_a(0,0,g)ss00"
                        "type-4 MBSG P_ammm with purely external anti-centering"
          "Pmmm1'_a(0,0,g)ss0s"
                             "type-4 MBSG P_ammm with superspace anti-centering"
save_
_space_group_magn.ssg_number
CIF
The Belov-Neronova-Smirnova (BNS) number for a magnetic
superspace group. This tag is being held in reserve until a
future numbering scheme is approved.
Analogous tags: msCIF:_space_group.ssg_number
save__space_group_magn.ssg_number

_definition.id                          '_space_group_magn.ssg_number'
_name.category_id                       space_group_magn
_name.object_id                         ssg_number
_definition.update                      2016-10-10

_description.text                       
;
     The Belov-Neronova-Smirnova (BNS) number for a magnetic
     superspace group. This tag is being held in reserve until a
     future numbering scheme is approved.

     Analogous tags: msCIF:_space_group.ssg_number
;
_type.contents                          Text
_type.container                         Single


save_
_space_group_magn.transform_BNS_Pp
CIF
This item specifies the transformation matrix Pp of the
basis vectors and origin of the current setting to those
of the Belov-Neronova-Smirnova setting presented in the
ISO-MAG tables. The basis vectors (a',b',c') of the BNS
setting are obtained as
(a',b',c',1) = Pp (a,b,c,1)
where (a,b,c) are the current basis vectors.
Ref: ISO-MAG tables of H.T. Stokes and B.J. Campbell at
http://iso.byu.edu
Wondratschek, H., Aroyo, M. I., Souvignier, B. and Chapuis, G.
Transformation of coordinate systems. In International Tables for
Crystallography (2016). Volume A, Space-group symmetry, edited
by M. Aroyo, 6th ed. ch 1.5. Chichester: Wiley.
Examples:
[[1 0 0 0.25]
    [0 1 0 0   ]
    [0 0 1 0   ]
    [0 0 0 1   ]]
[[0  0 1 0   ]
    [0 -1 0 0.25]
    [1  0 0 0   ]
    [0  0 0 1   ]]
save__space_group_magn.transform_BNS_Pp

_definition.id                          '_space_group_magn.transform_BNS_Pp'
_name.category_id                       space_group_magn
_name.object_id                         transform_BNS_Pp
_definition.update                      2016-10-10
_description.text                       
;
     This item specifies the transformation matrix Pp of the
     basis vectors and origin of the current setting to those
     of the Belov-Neronova-Smirnova setting presented in the
     ISO-MAG tables. The basis vectors (a',b',c') of the BNS
     setting are obtained as
 
     (a',b',c',1) = Pp (a,b,c,1) 

     where (a,b,c) are the current basis vectors.

     Ref: ISO-MAG tables of H.T. Stokes and B.J. Campbell at
     http://iso.byu.edu

     Wondratschek, H., Aroyo, M. I., Souvignier, B. and Chapuis, G.
     Transformation of coordinate systems. In International Tables for
     Crystallography (2016). Volume A, Space-group symmetry, edited
     by M. Aroyo, 6th ed. ch 1.5. Chichester: Wiley.
;
_type.contents                          Text
_type.container                         Matrix
_type.dimension                         [4,4]
loop_
   _description_example.case
   _description_example.detail
;   [[1 0 0 0.25]
    [0 1 0 0   ]
    [0 0 1 0   ]
    [0 0 0 1   ]]
;

"Transformation from OG 5.6.24 C_P2' to BNS 4.12 P_C2_1"

;   [[0  0 1 0   ]
    [0 -1 0 0.25]
    [1  0 0 0   ]
    [0  0 0 1   ]]
;
"Transformation from OG 8.7.44 C_Pm' to BNS 7.31 P_Ac"

save_
_space_group_magn.transform_BNS_Pp_abc
CIF
This item specifies the transformation (P,p) of the basis
vectors and origin of the current setting to those of the
Belov-Neronova-Smirnova setting presented in the ISO-MAG
tables. The basis vectors (a',b',c') of the BNS setting
are described as linear combinations of the current basis
vectors (a,b,c), and the origin shift (ox,oy,oz) is displayed
in the lattice coordinates of the current setting. The
Jones faithful notation and possible values are identical
to those of symCIF:_space_group.transform_Pp_abc,
except that the point and translational components are separated
by a semicolon.
Analogous tags: symCIF:_space_group.transform_Pp_abc
Ref: ISO-MAG tables of H.T. Stokes and B.J. Campbell at
http://iso.byu.edu
save__space_group_magn.transform_BNS_Pp_abc

_definition.id                          '_space_group_magn.transform_BNS_Pp_abc'
_name.category_id                       space_group_magn
_name.object_id                         transform_BNS_Pp_abc
_definition.update                      2023-01-17
_description.text                       
;
     This item specifies the transformation (P,p) of the basis
     vectors and origin of the current setting to those of the
     Belov-Neronova-Smirnova setting presented in the ISO-MAG
     tables. The basis vectors (a',b',c') of the BNS setting
     are described as linear combinations of the current basis
     vectors (a,b,c), and the origin shift (ox,oy,oz) is displayed
     in the lattice coordinates of the current setting. The
     Jones faithful notation and possible values are identical
     to those of symCIF:_space_group.transform_Pp_abc,
     except that the point and translational components are separated
     by a semicolon.
     
     Analogous tags: symCIF:_space_group.transform_Pp_abc

     Ref: ISO-MAG tables of H.T. Stokes and B.J. Campbell at
     http://iso.byu.edu
;
_type.contents                          Text
_type.container                         Single

save_
_space_group_magn.transform_OG_Pp
CIF
This item specifies the transformation (P,p) of the basis
vectors and origin of  the current setting to those of
the Opechowski-Guccione setting presented  in the
Magnetic Group Tables of D.B. Litvin. The basis vectors
(a',b',c') of the OG setting are obtained as
(a',b',c',1) = Pp (a,b,c,1)
where (a,b,c) are the current basis vectors.
Ref: 'Magnetic Group Tables' by D.B. Litvin at
http://www.iucr.org/publ/978-0-9553602-2-0
Wondratschek, H., Aroyo, M. I., Souvignier, B. and Chapuis, G.
Transformation of coordinate systems. In International Tables for
Crystallography (2016). Volume A, Space-group symmetry, edited
by M. Aroyo, 6th ed. ch 1.5. Chichester: Wiley.
save__space_group_magn.transform_OG_Pp

_definition.id                          '_space_group_magn.transform_OG_Pp'
_name.category_id                       space_group_magn
_name.object_id                         transform_OG_Pp
_definition.update                      2016-10-10
_description.text                       
;
     This item specifies the transformation (P,p) of the basis
     vectors and origin of  the current setting to those of
     the Opechowski-Guccione setting presented  in the
     Magnetic Group Tables of D.B. Litvin. The basis vectors
     (a',b',c') of the OG setting are obtained as
 
     (a',b',c',1) = Pp (a,b,c,1) 

     where (a,b,c) are the current basis vectors.

     Ref: 'Magnetic Group Tables' by D.B. Litvin at
     http://www.iucr.org/publ/978-0-9553602-2-0

     Wondratschek, H., Aroyo, M. I., Souvignier, B. and Chapuis, G.
     Transformation of coordinate systems. In International Tables for
     Crystallography (2016). Volume A, Space-group symmetry, edited
     by M. Aroyo, 6th ed. ch 1.5. Chichester: Wiley.
;
_type.contents                          Text
_type.container                         Matrix
_type.dimension                         [4,4]

save_
_space_group_magn.transform_OG_Pp_abc
CIF
This item specifies the transformation (P,p) of the basis
vectors and origin of  the current setting to those of the
Opechowski-Guccione setting presented  in the
Magnetic Group Tables of D.B. Litvin. The basis vectors
(a',b',c') of the reference setting are
described as  linear combinations of the current basis vectors
(a,b,c), and the origin shift (ox,oy,oz) is displayed in the
lattice coordinates of the current setting. The Jones faithful
notation and possible values are identical to those of
symCIF:_space_group.transform_Pp_abc, except that the point and
translational components are separated by a semicolon.
Analogous tags: symCIF:_space_group.transform_Pp_abc
Ref: 'Magnetic Group Tables' by D.B. Litvin at
http://www.iucr.org/publ/978-0-9553602-2-0
save__space_group_magn.transform_OG_Pp_abc

_definition.id                          '_space_group_magn.transform_OG_Pp_abc'
_name.category_id                       space_group_magn
_name.object_id                         transform_OG_Pp_abc
_definition.update                      2023-01-17
_description.text                       
;
     This item specifies the transformation (P,p) of the basis
     vectors and origin of  the current setting to those of the
     Opechowski-Guccione setting presented  in the
     Magnetic Group Tables of D.B. Litvin. The basis vectors
     (a',b',c') of the reference setting are
     described as  linear combinations of the current basis vectors
     (a,b,c), and the origin shift (ox,oy,oz) is displayed in the
     lattice coordinates of the current setting. The Jones faithful
     notation and possible values are identical to those of
     symCIF:_space_group.transform_Pp_abc, except that the point and 
     translational components are separated by a semicolon.
     
     Analogous tags: symCIF:_space_group.transform_Pp_abc

     Ref: 'Magnetic Group Tables' by D.B. Litvin at
     http://www.iucr.org/publ/978-0-9553602-2-0
;
_type.contents                          Text
_type.container                         Single


save_
SPACE_GROUP_MAGN_SSG_TRANSFORMS
CIF
This loop provides a list of matrix transformations to one or
more settings of the magnetic  superspace group, including
transformations to both standard and non-standard settings. A
transformation loop is particularly helpful for magnetic
superspace groups,  which often have several reference settings
of interest.
Analogous tags: transform loops have not yet been approved in
other dictionaries.
save_space_group_magn_ssg_transforms

_definition.id                          space_group_magn_ssg_transforms
_name.category_id                       MAGNETIC
_name.object_id                         space_group_magn_ssg_transforms
_definition.update                      2016-06-09
_description.text                       
;
     This loop provides a list of matrix transformations to one or
     more settings of the magnetic  superspace group, including
     transformations to both standard and non-standard settings. A
     transformation loop is particularly helpful for magnetic
     superspace groups,  which often have several reference settings
     of interest.

     Analogous tags: transform loops have not yet been approved in
     other dictionaries.
;
_definition.scope                       Category
_definition.class                       Loop
loop_
  _category_key.name                    '_space_group_magn_ssg_transforms.id'
save_
_space_group_magn_ssg_transforms.description
CIF
A string that describes the source of a reference setting for the
magnetic superspace group. The item
_space_group_magn_ssg_transforms.source should be used if the
reference source is one of those provided in that
definition. Otherwise, arbitrary free text can be used to describe
reference settings of interest, such as might appear in a specific
publication, though care should be taken to  make the description
clear and unambiguous.
save__space_group_magn_ssg_transforms.description

_definition.id                    '_space_group_magn_ssg_transforms.description'
_name.category_id                       space_group_magn_ssg_transforms
_name.object_id                         description
_definition.update                      2016-06-21
_description.text                       
;
     A string that describes the source of a reference setting for the
     magnetic superspace group. The item
     _space_group_magn_ssg_transforms.source should be used if the
     reference source is one of those provided in that
     definition. Otherwise, arbitrary free text can be used to describe
     reference settings of interest, such as might appear in a specific
     publication, though care should be taken to  make the description
     clear and unambiguous.
;
_type.contents                          Text
_type.container                         Single

save_
_space_group_magn_ssg_transforms.id
CIF
An arbitrary identifier that uniquely labels each setting
transformation of interest in a looped list of superspace-group
transformations. Most commonly, a sequence of positive integers
is used for this identification.
Analogous tags: transform loops have not yet been approved in
other dictionaries.
save__space_group_magn_ssg_transforms.id

_definition.id                          '_space_group_magn_ssg_transforms.id'
_name.category_id                       space_group_magn_ssg_transforms
_name.object_id                         id
_definition.update                      2016-06-09
_description.text                       
;
     An arbitrary identifier that uniquely labels each setting
     transformation of interest in a looped list of superspace-group
     transformations. Most commonly, a sequence of positive integers
     is used for this identification.

     Analogous tags: transform loops have not yet been approved in
     other dictionaries.
;
_type.contents                          Text
_type.container                         Single
_type.purpose                           Key

save_
_space_group_magn_ssg_transforms.Pp_superspace
CIF
This item specifies the transformation (P,p) of the superspace
basis vectors  from the current setting (a1,...,a(3+d)) to a
reference setting (a1',...,a(3+d)') given by
_space_group_magn_ssg_transforms.description. The origin shift
is presented in the unitless lattice coordinates of the current
setting.
The notation and usage are analogous to those of
_space_group.transform_Pp_abc, except that P now represents a
superspace point operation, that p now represents a superspace
translation, and that the point and translational components
are now separated with a semicolon.
Analogous tags: symCIF:_space_group.transform_Pp_abc
Examples:
a1,a2,a3,a4,a5;0,0,0,0,0
-a2,a1,1/2a3,-a1+a5,-1/2a3+a4;1/4,-1/4,0,1/4,0
save__space_group_magn_ssg_transforms.Pp_superspace

_definition.id                  '_space_group_magn_ssg_transforms.Pp_superspace'
_name.category_id                       space_group_magn_ssg_transforms
_name.object_id                         Pp_superspace
_definition.update                      2016-06-09
_description.text                       
;
     This item specifies the transformation (P,p) of the superspace
     basis vectors  from the current setting (a1,...,a(3+d)) to a
     reference setting (a1',...,a(3+d)') given by
     _space_group_magn_ssg_transforms.description. The origin shift
     is presented in the unitless lattice coordinates of the current
     setting.
     The notation and usage are analogous to those of
     _space_group.transform_Pp_abc, except that P now represents a
     superspace point operation, that p now represents a superspace
     translation, and that the point and translational components
     are now separated with a semicolon.

     Analogous tags: symCIF:_space_group.transform_Pp_abc
;
_type.contents                          Text
_type.container                         Single
_type.purpose                           Encode

loop_
  _description_example.case
  _description_example.detail
         'a1,a2,a3,a4,a5;0,0,0,0,0'  "Identity transformation"
         '-a2,a1,1/2a3,-a1+a5,-1/2a3+a4;1/4,-1/4,0,1/4,0'
;
                      Transforms from a supercentered setting to the
                      ISO(3+d)D setting of
                      65.2.43.64.m481.1  Cmmm(0,b1,1/2)000(1,0,g2)0s0.
;

save_
_space_group_magn_ssg_transforms.source
CIF
A string that describes the source of a reference setting for the
magnetic superspace group.
If the reference source does not appear in the list below, use
_space_group_magn_ssg_transforms.description
Ref: 'Magnetic Group Tables' of D.B. Litvin at
http://www.iucr.org/publ/978-0-9553602-2-0. ISO-MAG tables of H.T.
Stokes and B.J. Campbell at http://iso.byu.edu.
ISO(3+d)D tables of H.T. Stokes and B.J. Campbell at http://iso.byu.edu.
save__space_group_magn_ssg_transforms.source

_definition.id                         '_space_group_magn_ssg_transforms.source'
_name.category_id                       space_group_magn_ssg_transforms
_name.object_id                         source
_definition.update                      2016-06-21
_description.text                       
;
     A string that describes the source of a reference setting for the
     magnetic superspace group.
     If the reference source does not appear in the list below, use
     _space_group_magn_ssg_transforms.description

     Ref: 'Magnetic Group Tables' of D.B. Litvin at
     http://www.iucr.org/publ/978-0-9553602-2-0. ISO-MAG tables of H.T.
     Stokes and B.J. Campbell at http://iso.byu.edu.
     ISO(3+d)D tables of H.T. Stokes and B.J. Campbell at http://iso.byu.edu.
;
_type.contents                          Text
_type.container                         Single
_type.purpose                           State

loop_
  _enumeration_set.state
  _enumeration_set.detail
      'ISO(3+d)D-MAG'
;
	This superspace transformation simultaneously takes the setting
        of the basic magnetic space group (BMSG) to the setting of the
	corresponding entry in the ISO-MAG tables, and takes the
        setting of the derived non-magnetic superspace group (DNMSG)
        to within a purely external operation of the setting of the
        corresponding entry in the ISO(3+d)D tables. The external
        components of this superspace transformation are those
        that take the setting of the BMSG to the setting of the
        corresponding entry in the ISO-MAG tables, while the internal
        components are those of the transformation that takes the
        setting of the DNMSG to the setting of the corresponding
        superspace group in the ISO(3+d)D tables. Such a transformation
	is unique for any setting of a magnetic superspace group.
;

save_
SPACE_GROUP_MAGN_TRANSFORMS
CIF
This category provides a list of matrix transformations to multiple
settings of the magnetic space group, including transformations
to both standard and non-standard settings.  A transformation
loop is  particularly helpful for a magnetic space group, which
often have several reference settings of interest.
Example:
loop_
    _space_group_magn_transforms.id
    _space_group_magn_transforms.Pp_abc
    _space_group_magn_transforms.description
    _space_group_magn_transforms.source
        1  'a,b,c;0,0,0'    .                "data_block_CURRENT"
        2  'a/2,b,c;0,0,0'  "data_block_205763"  .
        3  'a,b,c;0,0,0'    .                    "BNS"
        4  'a/2,b,c;0,0,0'  .                    "OG"
        5  'a/4,b,c;0,0,0'
           "literature citation to a nuclear parent structure"  .
save_space_group_magn_transforms

_definition.id                          space_group_magn_transforms
_name.category_id                       MAGNETIC
_name.object_id                         space_group_magn_transforms
_definition.update                      2016-06-09
_description.text                       
;
     This category provides a list of matrix transformations to multiple
     settings of the magnetic space group, including transformations
     to both standard and non-standard settings.  A transformation
     loop is  particularly helpful for a magnetic space group, which
     often have several reference settings of interest.
;

_definition.scope                       Category
_definition.class                       Loop
_category.key_id                        '_space_group_magn_transforms.id'
loop_
  _category_key.name                    '_space_group_magn_transforms.id'
loop_
  _description_example.case

;
loop_
    _space_group_magn_transforms.id
    _space_group_magn_transforms.Pp_abc
    _space_group_magn_transforms.description
    _space_group_magn_transforms.source
        1  'a,b,c;0,0,0'    .                "data_block_CURRENT"
        2  'a/2,b,c;0,0,0'  "data_block_205763"  .
        3  'a,b,c;0,0,0'    .                    "BNS"
        4  'a/2,b,c;0,0,0'  .                    "OG"
        5  'a/4,b,c;0,0,0'
           "literature citation to a nuclear parent structure"  .
;
save_
_space_group_magn_transforms.description
CIF
A string that describes the source of the magnetic-space-group
reference setting indicated by the
_space_group_magn_transforms.Pp_abc tag.
_space_group_magn_transforms.source
should be used if the reference source is one of those provided in
that definition.
The value string "data_block_<blockname>" refers to the setting
used in a separate data block named "blockname" within the same
file. Otherwise,
arbitrary free text can be used to describe other reference
settings of interest, such as might appear  in a specific
publication, though care should be taken to make the description
clear and unambiguous.
save__space_group_magn_transforms.description

_definition.id                        '_space_group_magn_transforms.description'
_name.category_id                       space_group_magn_transforms
_name.object_id                         description
_definition.update                      2016-06-09
_description.text                       
;
     A string that describes the source of the magnetic-space-group
     reference setting indicated by the 
     _space_group_magn_transforms.Pp_abc tag. 
     _space_group_magn_transforms.source
     should be used if the reference source is one of those provided in
     that definition.
     The value string "data_block_<blockname>" refers to the setting
     used in a separate data block named "blockname" within the same
     file. Otherwise,
     arbitrary free text can be used to describe other reference
     settings of interest, such as might appear  in a specific
     publication, though care should be taken to make the description
     clear and unambiguous.
;
_type.contents                          Text
_type.container                         Single

save_
_space_group_magn_transforms.id
CIF
An arbitrary identifier that uniquely labels each setting
transformation of interest in a looped list of space-group
transformations.
Analogous tags: transform loops have not been approved in other
dictionaries.
save__space_group_magn_transforms.id

_definition.id                          '_space_group_magn_transforms.id'
_name.category_id                       space_group_magn_transforms
_name.object_id                         id
_definition.update                      2016-06-09
_description.text                       
;
     An arbitrary identifier that uniquely labels each setting
     transformation of interest in a looped list of space-group
     transformations.

     Analogous tags: transform loops have not been approved in other
     dictionaries.
;
_type.contents                          Text
_type.container                         Single
_type.purpose                           Key

save_
_space_group_magn_transforms.Pp
CIF
This item specifies the transformation (P,p) of the basis
vectors and origin in the current setting of the CIF file
to the reference setting described by the
_space_group_magn_transforms.description or
_space_group_magn_transforms.source tags, and should not
be used without this description.  The basis vectors
(a',b',c') of the reference setting are obtained as
(a',b',c',1) = Pp (a,b,c,1)
where (a,b,c) are the current basis vectors.
Ref: Wondratschek, H., Maroto, M. I., Souvignier, B. and Chapuis, G.
Transformation of coordinate systems. In International Tables for
Crystallography (2016). Volume A, Space-group symmetry, edited
by M. Aroyo, 6th ed. ch 1.5. Chichester: Wiley.
save__space_group_magn_transforms.Pp

_definition.id                          '_space_group_magn_transforms.Pp'
_name.category_id                       space_group_magn_transforms
_name.object_id                         Pp
_definition.update                      2016-06-23
_description.text                       
;
     This item specifies the transformation (P,p) of the basis
     vectors and origin in the current setting of the CIF file
     to the reference setting described by the
     _space_group_magn_transforms.description or
     _space_group_magn_transforms.source tags, and should not
     be used without this description.  The basis vectors
     (a',b',c') of the reference setting are obtained as
 
     (a',b',c',1) = Pp (a,b,c,1) 

     where (a,b,c) are the current basis vectors.

     Ref: Wondratschek, H., Maroto, M. I., Souvignier, B. and Chapuis, G.
     Transformation of coordinate systems. In International Tables for
     Crystallography (2016). Volume A, Space-group symmetry, edited
     by M. Aroyo, 6th ed. ch 1.5. Chichester: Wiley.
;
_type.contents                          Text
_type.container                         Matrix
_type.dimension                         [4,4]

save_
_space_group_magn_transforms.Pp_abc
CIF
This item specifies the transformation (P,p) of the basis
vectors and origin in the current setting of the CIF file
to the reference setting described by the
_space_group_magn_transforms.description or
_space_group_magn_transforms.source tags, and should not
be used without this description.  The basis vectors
(a',b',c') of the reference setting are described as  linear
combinations of the current basis vectors (a,b,c), and the origin
shift (ox,oy,oz)  is displayed in the lattice coordinates of the
current setting. The Jones faithful notation and possible values
are identical to those of symCIF:_space_group_transform_Pp_abc,
except that the point and translational components are separated
by a semicolon.
Analogous tags: symCIF:_space_group.transform_Pp_abc
save__space_group_magn_transforms.Pp_abc

_definition.id                          '_space_group_magn_transforms.Pp_abc'
_name.category_id                       space_group_magn_transforms
_name.object_id                         Pp_abc
_definition.update                      2023-01-17
_description.text                       
;
     This item specifies the transformation (P,p) of the basis
     vectors and origin in the current setting of the CIF file
     to the reference setting described by the
     _space_group_magn_transforms.description or
     _space_group_magn_transforms.source tags, and should not
     be used without this description.  The basis vectors
     (a',b',c') of the reference setting are described as  linear
     combinations of the current basis vectors (a,b,c), and the origin
     shift (ox,oy,oz)  is displayed in the lattice coordinates of the
     current setting. The Jones faithful notation and possible values
     are identical to those of symCIF:_space_group_transform_Pp_abc,
     except that the point and translational components are separated
     by a semicolon.
     
     Analogous tags: symCIF:_space_group.transform_Pp_abc
;
_type.contents                          Text
_type.container                         Single


save_
_space_group_magn_transforms.source
CIF
A string that describes the source of the magnetic space group
reference indicated by the _space_group_magnetic_transforms.Pp_abc
tag. If the reference source does not appear in the list below, use
_space_group_magn_transforms.description
Ref: 'Magnetic Group Tables' of D.B. Litvin at
http://www.iucr.org/publ/978-0-9553602-2-0. ISO-MAG tables of H.T.
Stokes and B.J. Campbell at http://iso.byu.edu. ISO(3+d)D tables
of H.T. Stokes and B.J. Campbell at http://iso.byu.edu.
save__space_group_magn_transforms.source

_definition.id                          '_space_group_magn_transforms.source'
_name.category_id                       space_group_magn_transforms
_name.object_id                         source
_definition.update                      2016-06-22
_description.text                       
;
     A string that describes the source of the magnetic space group
     reference indicated by the _space_group_magnetic_transforms.Pp_abc
     tag. If the reference source does not appear in the list below, use
     _space_group_magn_transforms.description

     Ref: 'Magnetic Group Tables' of D.B. Litvin at
     http://www.iucr.org/publ/978-0-9553602-2-0. ISO-MAG tables of H.T.
     Stokes and B.J. Campbell at http://iso.byu.edu. ISO(3+d)D tables
     of H.T. Stokes and B.J. Campbell at http://iso.byu.edu.
;
_type.contents                          Text
_type.container                         Single
_type.purpose                           State

loop_
  _enumeration_set.state
  _enumeration_set.detail
      "data_block_CURRENT"
;
     The setting used in the current data block. Obviously, the basis
     transformation to this setting is the identity. The ability to
     reference the current setting can be useful when communicating
     the same magnetic propagation vector in multiple settings.
;
      'BNS'
;
     The Belov-Neronova-Smirnova group setting presented in the ISO-MAG tables.
;
      'OG'
;
     The Opechowski-Guccione group setting presented in the
     Magnetic Group Tables of D.B. Litvin.
;

save_
SPACE_GROUP_SYMOP_MAGN_OG_CENTERING
CIF
This loop provides a list of centering translations in an
OG(k)-supercell description of a magnetic space group.
For an OG(k)-supercell description, this loop is mandatory and
entirely distinct  from the optional
SPACE_GROUP_SYMOP_MAGN_CENTERING loop used to simplify the
presentation of a BNS-supercell description.
An integer translation in an OG setting of a type-4 magnetic
space group may have  a time-reversal component of -1, in which
case it is actually an anti-translation vector rather than a lattice
vector.   This loop should include all centering and anti-centering
translations, but does not include the time-reversal components,
which are instead determined
using the value of the _space_group_magn.OG_wavevector_kxkykz tag.
Because the centering translations are listed in a separate loop
in the OG(k) description,
only representative point operations remain in the main
SPACE_GROUP_SYMOP_MAGN_OPERATION loop.
save_space_group_symop_magn_OG_centering

_definition.id                          space_group_symop_magn_OG_centering
_name.category_id                       MAGNETIC
_name.object_id                         space_group_symop_magn_OG_centering
_definition.update                      2016-05-24
_description.text                       
;
     This loop provides a list of centering translations in an
     OG(k)-supercell description of a magnetic space group.
     For an OG(k)-supercell description, this loop is mandatory and
     entirely distinct  from the optional
     SPACE_GROUP_SYMOP_MAGN_CENTERING loop used to simplify the
     presentation of a BNS-supercell description.
     An integer translation in an OG setting of a type-4 magnetic
     space group may have  a time-reversal component of -1, in which
     case it is actually an anti-translation vector rather than a lattice
     vector.   This loop should include all centering and anti-centering
     translations, but does not include the time-reversal components,
     which are instead determined
     using the value of the _space_group_magn.OG_wavevector_kxkykz tag.
     Because the centering translations are listed in a separate loop
     in the OG(k) description,
     only representative point operations remain in the main
     SPACE_GROUP_SYMOP_MAGN_OPERATION loop.
;
_definition.scope                       Category
_definition.class                       Loop
loop_
    _category_key.name
        '_space_group_symop_magn_OG_centering.id'
save_
_space_group_symop_magn_OG_centering.description
CIF
An optional free-text description of a particular centering
operation from the OG(k)-supercell description of a magnetic
space group, without the time-reversal component.
Analogous tags: centering loops have not been approved for other
dictionaries.
Example:
(1/2,1/2,0)
save__space_group_symop_magn_OG_centering.description

_definition.id                '_space_group_symop_magn_OG_centering.description'
_name.category_id                       space_group_symop_magn_OG_centering
_name.object_id                         description
_definition.update                      2016-05-24
_description.text                       
;
     An optional free-text description of a particular centering
     operation from the OG(k)-supercell description of a magnetic
     space group, without the time-reversal component.

     Analogous tags: centering loops have not been approved for other
     dictionaries.
;
_type.contents                          Text
_type.container                         Single

loop_
  _description_example.case
  _description_example.detail
         "(1/2,1/2,0)"    'Adequately describes x+1/2,y+1/2,z'

save_
_space_group_symop_magn_OG_centering.id
CIF
An arbitrary loop identifier that uniquely labels each centering
translation in an OG(k)-supercell description of a magnetic space
group. Most commonly, a sequence of positive integers is used for
this identification.
Analogous tags: centering loops have not been approved for other
dictionaries.
save__space_group_symop_magn_OG_centering.id

_definition.id                         '_space_group_symop_magn_OG_centering.id'
_name.category_id                       space_group_symop_magn_OG_centering
_name.object_id                         id
_definition.update                      2016-05-24
_description.text                       
;
     An arbitrary loop identifier that uniquely labels each centering
     translation in an OG(k)-supercell description of a magnetic space
     group. Most commonly, a sequence of positive integers is used for
     this identification.

     Analogous tags: centering loops have not been approved for other
     dictionaries.
;
_type.contents                          Text
_type.container                         Single
_type.purpose                           Key

save_
_space_group_symop_magn_OG_centering.xyz
CIF
A parsable string giving one of the centering operations of the
OG(k)-supercell  description of a magnetic space group in
algebraic form.  The form of such a string  is identical to that
expected for _space_group_symop_operation.xyz, except that the
rotational part of a translation must always be the identity
element. The magnetic component of the centering vector is not
given in the value of this tag, but should instead be separately
established using the value of the
_space_group_magn.OG_wavevector_kxkykz tag.
Example:
x+1/2,y+1/2,z
save__space_group_symop_magn_OG_centering.xyz

_definition.id                        '_space_group_symop_magn_OG_centering.xyz'
_name.category_id                       space_group_symop_magn_OG_centering
_name.object_id                         xyz
_definition.update                      2016-05-24
_description.text                       
;
     A parsable string giving one of the centering operations of the
     OG(k)-supercell  description of a magnetic space group in
     algebraic form.  The form of such a string  is identical to that
     expected for _space_group_symop_operation.xyz, except that the
     rotational part of a translation must always be the identity
     element. The magnetic component of the centering vector is not
     given in the value of this tag, but should instead be separately
     established using the value of the
     _space_group_magn.OG_wavevector_kxkykz tag.
;
_type.contents                          Text
_type.container                         Single
_type.purpose                           Encode
loop_
  _description_example.case
  _description_example.detail
         "x+1/2,y+1/2,z" "a centering translation of (1/2,1/2,0)"

save_
SPACE_GROUP_SYMOP_MAGN_CENTERING
CIF
This loop provides a list of centering or anti-centering
translation in a BNS-supercell description of a magnetic space
group.
Keeping the centering and anti-centering translations in a
separate loop leaves only representative point operations in the
main SPACE_GROUP_SYMOP_MAGN_OPERATION loop. The direct sum of
the two loops produces the full set of representative operations
of the magnetic space group.  This centering loop is optional, so
that it is always possible to include all of the symmetry
operations in the main loop.
When this centering loop is employed, the representative point
operations in the main SPACE_GROUP_SYMOP_MAGN_OPERATION loop may
not form a closed subgroup, but instead  generate some of the
fractional translations of the centering loop.  Despite this
annoyance, a separate centering loop is important because
magnetic structures tend to have a relatively large number of
centering and anti-centering translations, which can make the
resulting list of operators very long and unintuitive, especially
when working  in non-standard settings.
One could argue that anti-centering operations belong in the main
representative- point-operation loop since they are not actually
translations of the magnetic lattice.   In fact, a pure time
reversal is a generator of the magnetic point group of a  type-4
magnetic space group.  Nevertheless, this centering loop is
defined to  include the anti-centerings due to the common
practice of referring to a "black and white" lattice of
centerings and anti-centerings.
Example:
loop_
       _space_group_symop_magn_centering.id
       _space_group_symop_magn_centering.xyz
       _space_group_symop_magn_centering.description
           1    'x+1/2,y+1/2,z,+1'
            'a non-time-reversed (1/2,1/2,0) translation'
           2    'x+1/2,y+1/2,z,-1'
                'a time-reversed (1/2,1/2,0) translation'
save_space_group_symop_magn_centering

_definition.id                          space_group_symop_magn_centering
_name.category_id                       MAGNETIC
_name.object_id                         space_group_symop_magn_centering
_definition.update                      2016-05-24
_description.text                       
;
     This loop provides a list of centering or anti-centering
     translation in a BNS-supercell description of a magnetic space
     group.
     Keeping the centering and anti-centering translations in a
     separate loop leaves only representative point operations in the
     main SPACE_GROUP_SYMOP_MAGN_OPERATION loop. The direct sum of
     the two loops produces the full set of representative operations
     of the magnetic space group.  This centering loop is optional, so
     that it is always possible to include all of the symmetry
     operations in the main loop.
     When this centering loop is employed, the representative point
     operations in the main SPACE_GROUP_SYMOP_MAGN_OPERATION loop may
     not form a closed subgroup, but instead  generate some of the
     fractional translations of the centering loop.  Despite this
     annoyance, a separate centering loop is important because
     magnetic structures tend to have a relatively large number of
     centering and anti-centering translations, which can make the
     resulting list of operators very long and unintuitive, especially
     when working  in non-standard settings.
     One could argue that anti-centering operations belong in the main
     representative- point-operation loop since they are not actually
     translations of the magnetic lattice.   In fact, a pure time
     reversal is a generator of the magnetic point group of a  type-4
     magnetic space group.  Nevertheless, this centering loop is
     defined to  include the anti-centerings due to the common
     practice of referring to a "black and white" lattice of
     centerings and anti-centerings.
;
_definition.scope                       Category
_definition.class                       Loop
loop_
    _category_key.name
         '_space_group_symop_magn_centering.id'
loop_
    _description_example.case
;
    loop_
       _space_group_symop_magn_centering.id
       _space_group_symop_magn_centering.xyz
       _space_group_symop_magn_centering.description
           1    'x+1/2,y+1/2,z,+1'
            'a non-time-reversed (1/2,1/2,0) translation'
           2    'x+1/2,y+1/2,z,-1'
                'a time-reversed (1/2,1/2,0) translation'
;
save_
_space_group_symop_magn_centering.description
CIF
An optional free text description of a particular centering or
anti-centering translation in the BNS-supercell description of a
magnetic space group.
Example:
"(1|1/2,1/2,0)'", "(1'|1/2,1/2,0)" or
                                        "(1/2,1/2,0) anti-centering translation"
                                        would adequately describe
                                        "x+1/2,y+1/2,z,-1"
save__space_group_symop_magn_centering.description

_definition.id                   '_space_group_symop_magn_centering.description'
_name.category_id                       space_group_symop_magn_centering
_name.object_id                         description
_definition.update                      2016-05-24

_description.text                       
;
     An optional free text description of a particular centering or
     anti-centering translation in the BNS-supercell description of a
     magnetic space group.
;
_type.contents                          Text
_type.container                         Single

loop_
  _description_example.case
         
;                                       "(1|1/2,1/2,0)'", "(1'|1/2,1/2,0)" or
                                        "(1/2,1/2,0) anti-centering translation"
                                        would adequately describe
                                        "x+1/2,y+1/2,z,-1"
; 

save_
_space_group_symop_magn_centering.id
CIF
An arbitrary identifier that uniquely labels each centering or
anti-centering translation in a BNS-supercell description of a
magnetic space group. Most commonly, a sequence of positive
integers is used for this identification.
save__space_group_symop_magn_centering.id

_definition.id                          '_space_group_symop_magn_centering.id'
_name.category_id                       space_group_symop_magn_centering
_name.object_id                         id
_definition.update                      2016-05-24
_description.text                       
;
     An arbitrary identifier that uniquely labels each centering or
     anti-centering translation in a BNS-supercell description of a
     magnetic space group. Most commonly, a sequence of positive
     integers is used for this identification.
;
_type.contents                          Text
_type.container                         Single
_type.purpose                           Key

save_
_space_group_symop_magn_centering.xyz
CIF
A parsable string giving one of the centering or anti-centering
translations in the BNS-supercell description of a magnetic space
group in algebraic form. The form of such a string is identical
to that expected for _space_group_symop_magn_operation.xyz,
except that the rotational part of a translation must always be
the identity element.
save__space_group_symop_magn_centering.xyz

_definition.id                          '_space_group_symop_magn_centering.xyz'
_name.category_id                       space_group_symop_magn_centering
_name.object_id                         xyz
_definition.update                      2016-05-24
_description.text                       
;
     A parsable string giving one of the centering or anti-centering
     translations in the BNS-supercell description of a magnetic space
     group in algebraic form. The form of such a string is identical
     to that expected for _space_group_symop_magn_operation.xyz,
     except that the rotational part of a translation must always be
     the identity element.
;
_type.contents                          Text
_type.container                         Single
_type.purpose                           Encode
save_
SPACE_GROUP_SYMOP_MAGN_OPERATION
CIF
A list of magnetic space-group symmetry operations.
save_space_group_symop_magn_operation

_definition.id                          space_group_symop_magn_operation
_name.category_id                       MAGNETIC
_name.object_id                         space_group_symop_magn_operation
_definition.update                      2016-05-24
_description.text                       
;
     A list of magnetic space-group symmetry operations.
;
_definition.scope                       Category
_definition.class                       Loop
loop_
    _category_key.name
         '_space_group_symop_magn_operation.id'

save_
_space_group_symop_magn_operation.description
CIF
The description of a particular symmetry operation of
the magnetic space group, which can be presented in
either the geometric notation presented in the
International Tables for Crystallography (2006),
Volume A, section 11.1.2, or the Seitz notation as
presented in  Acta Cryst. (2014), A70, 300-302.
This tag is intended for use with the BNS-supercell
description of a magnetic structure.
Analogous tags: symCIF:_space_group_symop.operation_description
Ref: 'Magnetic Group Tables' by D.B. Litvin at
http://www.iucr.org/publ/978-0-9553602-2-0. ISO-MAG tables of H.T.
Stokes and B.J. Campbell at http://iso.byu.edu.
save__space_group_symop_magn_operation.description

_definition.id                   '_space_group_symop_magn_operation.description'
_name.category_id                       space_group_symop_magn_operation
_name.object_id                         description
_definition.update                      2016-05-24
_description.text                       
;
     The description of a particular symmetry operation of
     the magnetic space group, which can be presented in
     either the geometric notation presented in the
     International Tables for Crystallography (2006),
     Volume A, section 11.1.2, or the Seitz notation as
     presented in  Acta Cryst. (2014), A70, 300-302.
     This tag is intended for use with the BNS-supercell
     description of a magnetic structure.

     Analogous tags: symCIF:_space_group_symop.operation_description

     Ref: 'Magnetic Group Tables' by D.B. Litvin at
     http://www.iucr.org/publ/978-0-9553602-2-0. ISO-MAG tables of H.T.
     Stokes and B.J. Campbell at http://iso.byu.edu.
;
_type.contents                          Text
_type.container                         Single

save_
_space_group_symop_magn_operation.id
CIF
An arbitrary identifier that uniquely labels each symmetry
operation in a looped list of magnetic space-group symmetry
operations. Most commonly, a sequence of positive  integers is
used for this identification.
The _space_group_symop_magn.id alias provides backwards
compatibility with the established magCIF prototype.
save__space_group_symop_magn_operation.id

_definition.id                          '_space_group_symop_magn_operation.id'
_name.category_id                       space_group_symop_magn_operation
_name.object_id                         id
_definition.update                      2016-05-24
loop_
  _alias.definition_id
  _alias.deprecation_date
    '_space_group_symop_magn.id'        2016-05-24
    
_description.text                       
;
     An arbitrary identifier that uniquely labels each symmetry
     operation in a looped list of magnetic space-group symmetry
     operations. Most commonly, a sequence of positive  integers is
     used for this identification.
     The _space_group_symop_magn.id alias provides backwards
     compatibility with the established magCIF prototype.
;
_type.contents                          Text
_type.container                         Single
_type.purpose                           Key

save_
_space_group_symop_magn_operation.xyz
CIF
A parsable string giving one of the symmetry operations of the
magnetic space group in algebraic form.  The analogy between
parsable labels for magnetic and non-magnetic symmetry operations
is perfect except for the fact that a magnetic symop label ends
with an additional piece of information ("-1" or "+1") indicating
that the operation is or is not time-reversed, respectively.
This tag is intended for use with the BNS-supercell description
of a magnetic structure.
Analogous tags: symCIF:_space_group_symop.operation_xyz
Ref: 'Magnetic Group Tables' by D.B. Litvin at
http://www.iucr.org/publ/978-0-9553602-2-0. ISO-MAG tables of H.T.
Stokes and B.J. Campbell at http://iso.byu.edu.
Examples:
x+1/2,y+1/2,z,-1
-y,x,z+1/2,-1
-y,x,z+1/2,+1
save__space_group_symop_magn_operation.xyz

_definition.id                          '_space_group_symop_magn_operation.xyz'
_name.category_id                       space_group_symop_magn_operation
_name.object_id                         xyz
_definition.update                      2016-05-24
_description.text                       
;
     A parsable string giving one of the symmetry operations of the
     magnetic space group in algebraic form.  The analogy between
     parsable labels for magnetic and non-magnetic symmetry operations
     is perfect except for the fact that a magnetic symop label ends
     with an additional piece of information ("-1" or "+1") indicating
     that the operation is or is not time-reversed, respectively.
     This tag is intended for use with the BNS-supercell description
     of a magnetic structure.

     Analogous tags: symCIF:_space_group_symop.operation_xyz

     Ref: 'Magnetic Group Tables' by D.B. Litvin at
     http://www.iucr.org/publ/978-0-9553602-2-0. ISO-MAG tables of H.T.
     Stokes and B.J. Campbell at http://iso.byu.edu.
;
_type.contents                          Text
_type.container                         Single
_type.purpose                           Encode
loop_
  _description_example.case
  _description_example.detail
         "x+1/2,y+1/2,z,-1"  
;                             a time-reversed (1/2,1/2,0) translation,
                              i.e. anti-centering vector
;
         "-y,x,z+1/2,-1"     "a time-reversed 4_2 screw along (00z)."           
         "-y,x,z+1/2,+1"     "a non-time-reversed 4_2 screw along (00z)." 

save_
SPACE_GROUP_SYMOP_MAGN_SSG_CENTERING
CIF
This loop provides a list of the centering and anti-centering
translations of a magnetic superspace-group.
save_space_group_symop_magn_ssg_centering

_definition.id                          space_group_symop_magn_ssg_centering
_name.category_id                       MAGNETIC
_name.object_id                         space_group_symop_magn_ssg_centering
_definition.update                      2016-05-24
_description.text                       
;
     This loop provides a list of the centering and anti-centering
     translations of a magnetic superspace-group.
;
_definition.scope                       Category
_definition.class                       Loop
loop_
    _category_key.name
        '_space_group_symop_magn_ssg_centering.id'

save_
_space_group_symop_magn_ssg_centering.algebraic
CIF
A parsable string giving one of the centering or anti-centering
operations of the magnetic superspace group in algebraic form.
The form of such a string is identical to that expected for
_space_group_symop_magn_ssg_operation.algebraic, except that the
rotational part of a translation must always be the identity
element.  See the description of
_space_group_symop_magn_centering.id for more information about
centering loops. This tag is intended for use with the BNS
description of the magnetic basic cell.
Examples:
x1,x2,x3,x4,x5,+1
x1,x2,x3,x4+1/2,-1
x1+1/2,x2+1/2,x3+1/2,x4,+1
x1+1/2,x2,x3,x4,x5,x6+3/2,-1
save__space_group_symop_magn_ssg_centering.algebraic

_definition.id                 '_space_group_symop_magn_ssg_centering.algebraic'
_name.category_id                       space_group_symop_magn_ssg_centering
_name.object_id                         algebraic
_definition.update                      2016-05-24
_description.text                       
;
     A parsable string giving one of the centering or anti-centering
     operations of the magnetic superspace group in algebraic form.
     The form of such a string is identical to that expected for
     _space_group_symop_magn_ssg_operation.algebraic, except that the
     rotational part of a translation must always be the identity
     element.  See the description of
     _space_group_symop_magn_centering.id for more information about
     centering loops. This tag is intended for use with the BNS
     description of the magnetic basic cell.
;
_type.contents                          Text
_type.container                         Single
_type.purpose                           Encode
loop_
  _description_example.case
  _description_example.detail
         'x1,x2,x3,x4,x5,+1'           'the identity element in (3+2)D'
                
         'x1,x2,x3,x4+1/2,-1'
;                                       a time-reversed superspace translation
                                        in (3+1)D based on a simple 180-degree
                                        phase shift of a single modulation
                                        vector'
;        
         'x1+1/2,x2+1/2,x3+1/2,x4,+1'
;                                       a non-time-reversed external
                                        body-center translation in (3+1)D
;  
         
         'x1+1/2,x2,x3,x4,x5,x6+3/2,-1'
;                                       a time-reversed superspace translation
                                        in (3+3)D that combines internal and
                                        external shifts
;
save_
_space_group_symop_magn_ssg_centering.id
CIF
An arbitrary identifier that uniquely labels each centering or
anti-centering translations in a looped list of magnetic
superspace-group symmetry operations. Most commonly, a sequence
of positive integers is used for this identification.   This tag
is intended for use with the BNS description of the magnetic
basic cell.
Analogous to the case of magnetic space groups, the magCIF
dictionary allows the subgroup of time-reversed and
non-time-reversed fractional translations of a magnetic superspace group
to be split off into a separate loop.  See the description of
_space_group_symop_magn_centering.id for more information about
centering loops.
save__space_group_symop_magn_ssg_centering.id

_definition.id                        '_space_group_symop_magn_ssg_centering.id'
_name.category_id                       space_group_symop_magn_ssg_centering
_name.object_id                         id
_definition.update                      2016-05-24
_description.text                       
;
     An arbitrary identifier that uniquely labels each centering or
     anti-centering translations in a looped list of magnetic
     superspace-group symmetry operations. Most commonly, a sequence
     of positive integers is used for this identification.   This tag
     is intended for use with the BNS description of the magnetic
     basic cell.
     Analogous to the case of magnetic space groups, the magCIF
     dictionary allows the subgroup of time-reversed and
     non-time-reversed fractional translations of a magnetic superspace group
     to be split off into a separate loop.  See the description of
     _space_group_symop_magn_centering.id for more information about
     centering loops.
;
_type.contents                          Text
_type.container                         Single
_type.purpose                           Key

save_
SPACE_GROUP_SYMOP_MAGN_SSG_OPERATION
CIF
A looped list of magnetic superspace-group symmetry operations.
Analogous tags: msCIF:_space_group_symop.ssg_*
save_space_group_symop_magn_ssg_operation

_definition.id                          space_group_symop_magn_ssg_operation
_name.category_id                       MAGNETIC
_name.object_id                         space_group_symop_magn_ssg_operation
_definition.update                      2016-05-24
_description.text                       
;
     A looped list of magnetic superspace-group symmetry operations.

     Analogous tags: msCIF:_space_group_symop.ssg_*
;
_definition.scope                       Category
_definition.class                       Loop
loop_
    _category_key.name
        '_space_group_symop_magn_ssg_operation.id'
save_
_space_group_symop_magn_ssg_operation.algebraic
CIF
A parsable string giving one of the symmetry operations of the
magnetic  superspace group in algebraic form.  The analogy
between parsable labels for magnetic and non-magnetic symmetry
operations is perfect except for the fact that a magnetic symop
label ends with an additional piece of information ("-1" or "+1")
indicating that the operation is or is not time-reversed,
respectively. This tag is intended for use with the BNS
description of the magnetic basic cell.
Analogous tags: msCIF:_space_group_symop.ssg_operation_algebraic
Examples:
x1,x2,x3,x4,x5,x6,+1
x1,x2,x3,x4+1/2,-1
x1+1/2,x2+1/2,-x3,-x4,-1
x1-x2,x1,x3+1/3,x4-1/6,x5,+1
save__space_group_symop_magn_ssg_operation.algebraic

_definition.id                 '_space_group_symop_magn_ssg_operation.algebraic'
_name.category_id                       space_group_symop_magn_ssg_operation
_name.object_id                         algebraic
_definition.update                      2016-05-24
_description.text                       
;
     A parsable string giving one of the symmetry operations of the
     magnetic  superspace group in algebraic form.  The analogy
     between parsable labels for magnetic and non-magnetic symmetry
     operations is perfect except for the fact that a magnetic symop
     label ends with an additional piece of information ("-1" or "+1")
     indicating that the operation is or is not time-reversed,
     respectively. This tag is intended for use with the BNS
     description of the magnetic basic cell.

     Analogous tags: msCIF:_space_group_symop.ssg_operation_algebraic
;
_type.contents                          Text
_type.container                         Single
_type.purpose                           Describe
loop_
  _description_example.case
  _description_example.detail
         "x1,x2,x3,x4,x5,x6,+1"    "the identity element in (3+3)D."  
         'x1,x2,x3,x4+1/2,-1'
;                                   a superspace anti-centering translation
                                    based on a simple 180-degree phase shift
                                    of a single modulation vector
;        
         'x1+1/2,x2+1/2,-x3,-x4,-1'
;                                   a time-reversed n-glide perpendicular to
                                    a z-axis modulation
;      
         'x1-x2,x1,x3+1/3,x4-1/6,x5,+1'
;                                   a non-time-reversed 6_2 screw axis with
                                    phase shift along a pair of z-axis
                                    modulations
;
save_
_space_group_symop_magn_ssg_operation.id
CIF
An arbitrary identifier that uniquely labels each symmetry
operation in a looped list of magnetic superspace-group symmetry
operations. Most commonly, a sequence of positive  integers is
used for this identification.
The _space_group_symop_magn_ssg.id alias provides backwards
compatibility with the established magCIF prototype.
Analogous tags: msCIF:_space_group_symop_ssg_id
save__space_group_symop_magn_ssg_operation.id

_definition.id                        '_space_group_symop_magn_ssg_operation.id'
_name.category_id                       space_group_symop_magn_ssg_operation
_name.object_id                         id
_definition.update                      2016-05-24
loop_
  _alias.definition_id
  _alias.deprecation_date
    '_space_group_symop_magn_ssg.id'      2016-05-24

_description.text                       
;
     An arbitrary identifier that uniquely labels each symmetry
     operation in a looped list of magnetic superspace-group symmetry
     operations. Most commonly, a sequence of positive  integers is
     used for this identification.
     The _space_group_symop_magn_ssg.id alias provides backwards
     compatibility with the established magCIF prototype.

     Analogous tags: msCIF:_space_group_symop_ssg_id
;
_type.contents                          Text
_type.container                         Single
_type.purpose                           Key

save_

Revision history

Version 0.1 (2016-05-24) Initial automatic conversion from draft magCIF format (James Hester)
Version 0.9 (2016-05-27) Manual editing of examples and definition text to remove
        conversion artefacts.
      Reparenting of categories that are children of cif_core categories.
Version 0.9.1 (2016-05-30) Added import of cif_core dictionary. Added category keys and linked items.
Version 0.9.2 (2016-06-10) Added missing transformation and parent space group items. Enhanced type
      information
Version 0.9.3 (2016-06-23) Finalised outstanding issues from conversion.
Version 0.9.4 (2016-06-28) Added underscore aliases for datanames already in common use
Version 0.9.5 (2016-07-05) Added _space_group.magn_point_group_number;
        changed _space_group.magn_point_group
        to _space_group.magn_point_group_name
Version 0.9.6 (2016-10-10) Moved _space_group.magn_ items to new category _space_group_magn
Version 0.9.7 (2016-12-16) Editorial/consistency changes (B. McMahon)
Version 0.9.8 (2018-08-24) Added _atom_site_moment.magnitude, improved descriptions of _atom_site_moment
      .cartesion* items, corrected and improved *_symmform descriptions. Created
      the atom_site_rotation category. (B Campbell)
Version 0.9.9 (2023-01-17) Changed several instances of "Jones-Faithful notation" to
      "Jones faithful notation".