Crystallographic Information Framework

CIF dictionary browser

CIF

Expanded view
View CIF syntax

cif_ms.dic CIF dictionary

Version 1.0.1

Category view of data-item definitions

_ATOM_SITE_FOURIER_WAVE_VECTOR_[]
CIF
Data items in the ATOM_SITE_FOURIER_WAVE_VECTOR category record
details about the wave vectors of the Fourier terms used in the
structural model.
Example:
loop_
         _atom_site_Fourier_wave_vector_seq_id
         _atom_site_Fourier_wave_vector_x
         _atom_site_Fourier_wave_vector_description
              1       0.568           'First harmonic'
              2       1.136           'Second harmonic'
data_atom_site_Fourier_wave_vector_[]
    _name                        '_atom_site_Fourier_wave_vector_[]'
    _category                    category_overview
    _type                        null
    loop_ _example
          _example_detail
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
;
     loop_
         _atom_site_Fourier_wave_vector_seq_id
         _atom_site_Fourier_wave_vector_x
         _atom_site_Fourier_wave_vector_description
              1       0.568           'First harmonic'
              2       1.136           'Second harmonic'
;
;
    Example 1 - based on the modulated structure of inorganic misfit layer
    (LaS)~1.14~NbS~2~ [Smaalen, S. van (1991). J. Phys. Condens.
    Matter, 3, 1247-1263].
;
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
      _definition
;              Data items in the ATOM_SITE_FOURIER_WAVE_VECTOR category record
               details about the wave vectors of the Fourier terms used in the
               structural model.
;

_atom_site_Fourier_wave_vector_description
CIF
A description of the linear combination involved in a given
Fourier wave vector used to describe the atomic modulation
functions.
Example:
q(4)=q(1)+q(2)
data_atom_site_Fourier_wave_vector_description
    _name                        '_atom_site_Fourier_wave_vector_description'
    _category                    atom_site_Fourier_wave_vector
    _type                        char
    _list                        yes
    _list_reference              '_atom_site_Fourier_wave_vector_seq_id'
    _example                     'q(4)=q(1)+q(2)'
    _definition
;              A description of the linear combination involved in a given
               Fourier wave vector used to describe the atomic modulation
               functions.
;

_atom_site_Fourier_wave_vector_seq_id
CIF
A numeric code identifying the wave vectors defined in
_atom_site_Fourier_wave_vector_.
data_atom_site_Fourier_wave_vector_seq_id
    _name                       '_atom_site_Fourier_wave_vector_seq_id'
    _category                   atom_site_Fourier_wave_vector
    _type                       numb
    _list                       yes
    loop_ _list_link_child      '_atom_site_displace_Fourier_wave_vector_seq_id'
                                '_atom_site_occ_Fourier_wave_vector_seq_id'
                                '_atom_site_rot_Fourier_wave_vector_seq_id'
                                '_atom_site_U_Fourier_wave_vector_seq_id'
    _definition
;              A numeric code identifying the wave vectors defined in
               _atom_site_Fourier_wave_vector_.
;

_atom_site_Fourier_wave_vector
CIF
Data names:
_atom_site_Fourier_wave_vector_x
_atom_site_Fourier_wave_vector_y
_atom_site_Fourier_wave_vector_z
Wave vectors of the Fourier terms used in the structural model
to describe the atomic modulation functions, expressed with
respect to the three-dimensional reciprocal basis that spans
the lattice of main reflections. They are linear combinations
with integer coefficients of the independent wave vectors given
in the _cell_wave_vector_ list. Therefore, a generic Fourier wave
vector is expressed as k=n(1)q(1)+...+n(p)q(p), where p is given
by _cell_modulation_dimension. In the case of composites
described in a single data block, these wave vectors are
expressed with respect to the three-dimensional reciprocal
basis of each subsystem (see _cell_subsystem_matrix_W_).
data_atom_site_Fourier_wave_vector_
    loop_ _name                  '_atom_site_Fourier_wave_vector_x'
                                 '_atom_site_Fourier_wave_vector_y'
                                 '_atom_site_Fourier_wave_vector_z'
    _category                    atom_site_Fourier_wave_vector
    _type                        numb
    _list                        yes
    _list_reference             '_atom_site_Fourier_wave_vector_seq_id'
    _enumeration_default         0.0
    _definition
;              Wave vectors of the Fourier terms used in the structural model
               to describe the atomic modulation functions, expressed with
               respect to the three-dimensional reciprocal basis that spans
               the lattice of main reflections. They are linear combinations
               with integer coefficients of the independent wave vectors given
               in the _cell_wave_vector_ list. Therefore, a generic Fourier wave
               vector is expressed as k=n(1)q(1)+...+n(p)q(p), where p is given
               by _cell_modulation_dimension. In the case of composites
               described in a single data block, these wave vectors are
               expressed with respect to the three-dimensional reciprocal
               basis of each subsystem (see _cell_subsystem_matrix_W_).
;

###########################
## ATOM_SITE_OCC_FOURIER ##
###########################

_ATOM_SITE_U_FOURIER_[]
CIF
Data items in the ATOM_SITE_U_FOURIER category record details
about the Fourier components describing the modulation of the
atomic thermal parameters in a modulated structure.
Example:
loop_
         _atom_site_U_Fourier_id
         _atom_site_U_Fourier_atom_site_label
         _atom_site_U_Fourier_tens_elem
         _atom_site_U_Fourier_wave_vector_seq_id
              Mn_U11_2  Mn  U11  2
              Mn_U22_2  Mn  U22  2
              Mn_U33_2  Mn  U33  2
              Mn_U12_2  Mn  U12  2
              Mn_U13_2  Mn  U13  2
              Mn_U23_2  Mn  U23  2
              Cl1_U11_2 Cl1 U11  2
              Cl1_U22_2 Cl1 U22  2
              Cl1_U33_2 Cl1 U33  2
              Cl1_U12_2 Cl1 U12  2
              Cl1_U13_2 Cl1 U13  2
              Cl1_U23_2 Cl1 U23  2
     # - - - - data truncated for brevity - - - -
data_atom_site_U_Fourier_[]
    _name                        '_atom_site_U_Fourier_[]'
    _category                    category_overview
    _type                        null
    loop_ _example
          _example_detail
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
;
     loop_
         _atom_site_U_Fourier_id
         _atom_site_U_Fourier_atom_site_label
         _atom_site_U_Fourier_tens_elem
         _atom_site_U_Fourier_wave_vector_seq_id
              Mn_U11_2  Mn  U11  2
              Mn_U22_2  Mn  U22  2
              Mn_U33_2  Mn  U33  2
              Mn_U12_2  Mn  U12  2
              Mn_U13_2  Mn  U13  2
              Mn_U23_2  Mn  U23  2
              Cl1_U11_2 Cl1 U11  2
              Cl1_U22_2 Cl1 U22  2
              Cl1_U33_2 Cl1 U33  2
              Cl1_U12_2 Cl1 U12  2
              Cl1_U13_2 Cl1 U13  2
              Cl1_U23_2 Cl1 U23  2

     # - - - - data truncated for brevity - - - -
;
;
    Example 1 - extracted from Meyer, Paciorek, Schenk, Chapuis & Depmeier
                [Acta Cryst. (1994), B50, 333-343].
;
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
      _definition
;              Data items in the ATOM_SITE_U_FOURIER category record details
               about the Fourier components describing the modulation of the
               atomic thermal parameters in a modulated structure.
;

_atom_site_U_Fourier_atom_site_label
CIF
Modulation parameters are usually looped in separate lists.
Modulated parameters are the atom positions (displacive
modulation), the atomic occupation (occupational modulation)
and/or the atomic anisotropic (or isotropic) displacement
parameters (referred to as modulation of thermal parameters,
since the term 'displacement parameters' is ambiguous in this
context). _atom_site_U_Fourier_atom_site_label is the code that
identifies an atom in a loop in which the Fourier components of
its thermal-parameters modulation are listed.  This code must
match the _atom_site_label of the associated coordinate list
and conform to the rules described in _atom_site_label.
data_atom_site_U_Fourier_atom_site_label
    _name                        '_atom_site_U_Fourier_atom_site_label'
    _category                    atom_site_U_Fourier
    _type                        char
    _list                        yes
    _list_reference              '_atom_site_U_Fourier_id'
    _list_link_parent            '_atom_site_label'

    _definition
;              Modulation parameters are usually looped in separate lists.
               Modulated parameters are the atom positions (displacive
               modulation), the atomic occupation (occupational modulation)
               and/or the atomic anisotropic (or isotropic) displacement
               parameters (referred to as modulation of thermal parameters,
               since the term 'displacement parameters' is ambiguous in this
               context). _atom_site_U_Fourier_atom_site_label is the code that
               identifies an atom in a loop in which the Fourier components of
               its thermal-parameters modulation are listed.  This code must
               match the _atom_site_label of the associated coordinate list
               and conform to the rules described in _atom_site_label.
;

_atom_site_U_Fourier_id
CIF
A code identifying each Fourier component used to describe the
modulation of the atomic thermal parameters.
data_atom_site_U_Fourier_id
    _name                        '_atom_site_U_Fourier_id'
    _category                    atom_site_U_Fourier
    _type                        char
    _list                        yes
    _list_mandatory              yes
    _list_link_child             '_atom_site_U_Fourier_param_id'
    _definition
;              A code identifying each Fourier component used to describe the
               modulation of the atomic thermal parameters.
;

_atom_site_U_Fourier_tens_elem
CIF
A label identifying the temperature tensor element U(ij) of a
given atom or rigid group whose modulation is being parameterized
by Fourier series.
data_atom_site_U_Fourier_tens_elem
    _name                        '_atom_site_U_Fourier_tens_elem'
    _category                    atom_site_U_Fourier
    _type                        char
    _list                        yes
    _list_reference              '_atom_site_U_Fourier_id'
    loop_ _enumeration
          _enumeration_detail    U11  'modulation of U11'
                                 U12  'modulation of U12'
                                 U13  'modulation of U13'
                                 U22  'modulation of U22'
                                 U23  'modulation of U23'
                                 U33  'modulation of U33'
                                 Uiso 'modulation of U~isotropic~'
    _definition
;              A label identifying the temperature tensor element U(ij) of a
               given atom or rigid group whose modulation is being parameterized
               by Fourier series.
;

_atom_site_U_Fourier_wave_vector_seq_id
CIF
A numeric code identifying the wave vectors of the Fourier terms
used to describe the modulation functions corresponding to the
temperature factors of an atom or rigid group. This code must
match _atom_site_Fourier_wave_vector_seq_id.
data_atom_site_U_Fourier_wave_vector_seq_id
    _name                        '_atom_site_U_Fourier_wave_vector_seq_id'
    _category                    atom_site_U_Fourier
    _type                        numb
    _list                        yes
    _list_reference              '_atom_site_U_Fourier_id'
    _list_link_parent            '_atom_site_Fourier_wave_vector_seq_id'
    _definition
;              A numeric code identifying the wave vectors of the Fourier terms
               used to describe the modulation functions corresponding to the
               temperature factors of an atom or rigid group. This code must
               match _atom_site_Fourier_wave_vector_seq_id.
;

###############################
## ATOM_SITE_U_FOURIER_PARAM ##
###############################

_ATOM_SITE_U_FOURIER_PARAM_[]
CIF
Data items in the ATOM_SITE_U_FOURIER category record details
about the coefficients of the Fourier series used to describe the
modulation of the atomic thermal parameters in a modulated
structure. The Fourier components are defined in the category
ATOM_SITE_U_FOURIER and are listed separately.
Example:
loop_
         _atom_site_U_Fourier_param_id
         _atom_site_U_Fourier_param_modulus
         _atom_site_U_Fourier_param_phase
              Mn_U11_2  0.003(3)  0.0
              Mn_U22_2  0.0       0.0
              Mn_U33_2  0.017(2)  0.0
              Mn_U12_2  0.0       0.0
              Mn_U13_2  0.00(2)   0.5
              Mn_U23_2  0.0       0.0
              Cl1_U11_2 0.003(3)  0.5
              Cl1_U22_2 0.005(3)  0.0
              Cl1_U33_2 0.020(3)  0.0
              Cl1_U12_2 0.008(3)  0.0
              Cl1_U13_2 0.02(2)   0.75
              Cl1_U23_2 0.03(3)   0.25
     # - - - - data truncated for brevity - - - -
data_atom_site_U_Fourier_param_[]
    _name                        '_atom_site_U_Fourier_param_[]'
    _category                    category_overview
    _type                        null
    loop_ _example
          _example_detail
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
;
     loop_
         _atom_site_U_Fourier_param_id
         _atom_site_U_Fourier_param_modulus
         _atom_site_U_Fourier_param_phase
              Mn_U11_2  0.003(3)  0.0
              Mn_U22_2  0.0       0.0
              Mn_U33_2  0.017(2)  0.0
              Mn_U12_2  0.0       0.0
              Mn_U13_2  0.00(2)   0.5
              Mn_U23_2  0.0       0.0
              Cl1_U11_2 0.003(3)  0.5
              Cl1_U22_2 0.005(3)  0.0
              Cl1_U33_2 0.020(3)  0.0
              Cl1_U12_2 0.008(3)  0.0
              Cl1_U13_2 0.02(2)   0.75
              Cl1_U23_2 0.03(3)   0.25

     # - - - - data truncated for brevity - - - -
;
;
    Example 1 - extracted from Meyer, Paciorek, Schenk, Chapuis & Depmeier
                [Acta Cryst. (1994), B50, 333-343].
;
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
      _definition
;              Data items in the ATOM_SITE_U_FOURIER category record details
               about the coefficients of the Fourier series used to describe the
               modulation of the atomic thermal parameters in a modulated
               structure. The Fourier components are defined in the category
               ATOM_SITE_U_FOURIER and are listed separately.
;

_atom_site_U_Fourier_param_cos
CIF
The modulation of the atomic thermal parameters is usually
parameterized by Fourier series. Each term of the series
commonly adopts two different representations: the sine-cosine
form,
         U(ij)c cos(2 k r)+U(ij)s sin(2 k r),
and the modulus-argument form,
         |U(ij)| cos(2 k r+),
where k is the wave vector of the term and r is the atomic
average position. _atom_site_U_Fourier_param_cos is the cosine
coefficient [U(ij)c], in angstroms squared, corresponding to
the Fourier term defined by
_atom_site_U_Fourier_atom_site_label,
_atom_site_U_Fourier_tens_elem and
_atom_site_U_Fourier_wave_vector_seq_id.
data_atom_site_U_Fourier_param_cos
    _name                       '_atom_site_U_Fourier_param_cos'
    _category                    atom_site_U_Fourier_param
    _type                        numb
    _type_conditions             esd
    _list                        yes
    _list_reference              '_atom_site_U_Fourier_param_id'
    _enumeration_default         0.0
    _units                       A^2^
    _units_detail                'Angstroms squared'
    _definition
;              The modulation of the atomic thermal parameters is usually
               parameterized by Fourier series. Each term of the series
               commonly adopts two different representations: the sine-cosine
               form,
                        U(ij)c cos(2\p k r)+U(ij)s sin(2\p k r),
               and the modulus-argument form,
                        |U(ij)| cos(2\p k r+\c),
               where k is the wave vector of the term and r is the atomic
               average position. _atom_site_U_Fourier_param_cos is the cosine
               coefficient [U(ij)c], in angstroms squared, corresponding to
               the Fourier term defined by
               _atom_site_U_Fourier_atom_site_label,
               _atom_site_U_Fourier_tens_elem and
               _atom_site_U_Fourier_wave_vector_seq_id.
;

_atom_site_U_Fourier_param_id
CIF
A code identifying the (in general complex) coefficient of each
term present in the Fourier series describing the modulation of
the atomic thermal parameters. This code must match
_atom_site_U_Fourier_id.
data_atom_site_U_Fourier_param_id
    _name                        '_atom_site_U_Fourier_param_id'
    _category                    atom_site_U_Fourier_param
    _type                        char
    _list                        yes
    _list_mandatory              yes
    _list_link_parent            '_atom_site_U_Fourier_id'
    _definition
;              A code identifying the (in general complex) coefficient of each
               term present in the Fourier series describing the modulation of
               the atomic thermal parameters. This code must match
               _atom_site_U_Fourier_id.
;

_atom_site_U_Fourier_param_modulus
CIF
The modulation of the atomic thermal parameters is usually
parameterized by Fourier series. Each term of the series
commonly adopts two different representations: the sine-cosine
form,
         U(ij)c cos(2 k r)+U(ij)s sin(2 k r),
and the modulus-argument form,
         |U(ij)| cos(2 k r+),
where k is the wave vector of the term and r is the atomic
average position. _atom_site_U_Fourier_param_modulus is the
modulus [|U(ij)|], in angstroms squared, of the complex
amplitudes corresponding to the Fourier term defined by
_atom_site_U_Fourier_atom_site_label,
_atom_site_U_Fourier_tens_elem and
_atom_site_U_Fourier_wave_vector_seq_id.
data_atom_site_U_Fourier_param_modulus
    _name                       '_atom_site_U_Fourier_param_modulus'
    _category                    atom_site_U_Fourier_param
    _type                        numb
    _type_conditions             esd
    _list                        yes
    _list_reference              '_atom_site_U_Fourier_param_id'
    _enumeration_range           0.0:
    _enumeration_default         0.0
    _units                       A^2^
    _units_detail                'Angstroms squared'
    _definition
;              The modulation of the atomic thermal parameters is usually
               parameterized by Fourier series. Each term of the series
               commonly adopts two different representations: the sine-cosine
               form,
                        U(ij)c cos(2\p k r)+U(ij)s sin(2\p k r),
               and the modulus-argument form,
                        |U(ij)| cos(2\p k r+\c),
               where k is the wave vector of the term and r is the atomic
               average position. _atom_site_U_Fourier_param_modulus is the
               modulus [|U(ij)|], in angstroms squared, of the complex
               amplitudes corresponding to the Fourier term defined by
               _atom_site_U_Fourier_atom_site_label,
               _atom_site_U_Fourier_tens_elem and
               _atom_site_U_Fourier_wave_vector_seq_id.
;

_atom_site_U_Fourier_param_phase
CIF
The modulation of the atomic thermal parameters is usually
parameterized by Fourier series. Each term of the series
commonly adopts two different representations: the sine-cosine
form,
         U(ij)c cos(2 k r)+U(ij)s sin(2 k r),
and the modulus-argument form,
         |U(ij)| cos(2 k r+),
where k is the wave vector of the term and r is the atomic
average position. _atom_site_U_Fourier_param_phase is the phase
(/2), in cycles, of the complex amplitude corresponding to
the Fourier term defined by _atom_site_U_Fourier_atom_site_label,
_atom_site_U_Fourier_tens_elem and
_atom_site_U_Fourier_wave_vector_seq_id.
data_atom_site_U_Fourier_param_phase
    _name                        '_atom_site_U_Fourier_param_phase'
    _category                    atom_site_U_Fourier_param
    _type                        numb
    _type_conditions             esd
    _list                        yes
    _list_reference              '_atom_site_U_Fourier_param_id'
    _enumeration_range          -1.0:1.0
    _enumeration_default         0.0
    _units                       cy
    _units_detail                'Cycles'
    _definition
;              The modulation of the atomic thermal parameters is usually
               parameterized by Fourier series. Each term of the series
               commonly adopts two different representations: the sine-cosine
               form,
                        U(ij)c cos(2\p k r)+U(ij)s sin(2\p k r),
               and the modulus-argument form,
                        |U(ij)| cos(2\p k r+\c),
               where k is the wave vector of the term and r is the atomic
               average position. _atom_site_U_Fourier_param_phase is the phase
               (\c/2\p), in cycles, of the complex amplitude corresponding to
               the Fourier term defined by _atom_site_U_Fourier_atom_site_label,
               _atom_site_U_Fourier_tens_elem and
               _atom_site_U_Fourier_wave_vector_seq_id.
;

_atom_site_U_Fourier_param_sin
CIF
The modulation of the atomic thermal parameters is usually
parameterized by Fourier series. Each term of the series
commonly adopts two different representations: the sine-cosine
form,
         U(ij)c cos(2 k r)+U(ij)s sin(2 k r),
and the modulus-argument form,
         |U(ij)| cos(2 k r+),
where k is the wave vector of the term and r is the atomic
average position. _atom_site_U_Fourier_param_sin is the sine
coefficient [U(ij)s], in angstroms squared, corresponding to
the Fourier term defined by
_atom_site_U_Fourier_atom_site_label,
_atom_site_U_Fourier_tens_elem
and _atom_site_U_Fourier_wave_vector_seq_id.
data_atom_site_U_Fourier_param_sin
    _name                        '_atom_site_U_Fourier_param_sin'
    _category                    atom_site_U_Fourier_param
    _type                        numb
    _type_conditions             esd
    _list                        yes
    _list_reference              '_atom_site_U_Fourier_param_id'
    _enumeration_default         0.0
    _units                       A^2^
    _units_detail                'Angstroms squared'
    _definition
;              The modulation of the atomic thermal parameters is usually
               parameterized by Fourier series. Each term of the series
               commonly adopts two different representations: the sine-cosine
               form,
                        U(ij)c cos(2\p k r)+U(ij)s sin(2\p k r),
               and the modulus-argument form,
                        |U(ij)| cos(2\p k r+\c),
               where k is the wave vector of the term and r is the atomic
               average position. _atom_site_U_Fourier_param_sin is the sine
               coefficient [U(ij)s], in angstroms squared, corresponding to
               the Fourier term defined by
               _atom_site_U_Fourier_atom_site_label,
               _atom_site_U_Fourier_tens_elem
               and _atom_site_U_Fourier_wave_vector_seq_id.
;

#####################################
## ATOM_SITE_DISPLACE_SPECIAL_FUNC ##
#####################################

_ATOM_SITE_[MS]
CIF
Data items in the ATOM_SITE category record details about
the atom sites in a crystal structure, such as the positional
coordinates, atomic displacement parameters, and magnetic moments
and directions. This category exists in the core CIF dictionary
but is extended in this dictionary by the addition of some items
that may appear in the main looped list of atom-site information.
data_atom_site[ms]
    _name                        '_atom_site_[ms]'
    _category                    category_overview
    _type                        null
      _definition
;              Data items in the ATOM_SITE category record details about
               the atom sites in a crystal structure, such as the positional
               coordinates, atomic displacement parameters, and magnetic moments
               and directions. This category exists in the core CIF dictionary
               but is extended in this dictionary by the addition of some items
               that may appear in the main looped list of atom-site information.
;

_atom_site_displace_modulation_flag
CIF
A code that signals whether the structural model includes the
modulation of the positional coordinates of a given atom
site.
data_atom_site_displace_modulation_flag
    _name                        '_atom_site_displace_modulation_flag'
    _category                    atom_site
    _type                        char
    _list                        yes
    _list_reference              '_atom_site_label'
    loop_ _enumeration
          _enumeration_detail    'yes'    'displacive modulation'
                                 'y'      'abbreviation for "yes"'
                                 'no'     'no displacive modulation'
                                 'n'      'abbreviation for "no"'
    _enumeration_default         'no'
    _definition

;              A code that signals whether the structural model includes the
               modulation of the positional coordinates of a given atom
               site.
;

_atom_site_occ_modulation_flag
CIF
A code that signals whether the structural model includes the
modulation of the occupation of a given atom site.
data_atom_site_occ_modulation_flag
    _name                        '_atom_site_occ_modulation_flag'
    _category                    atom_site
    _type                        char
    _list                        yes
    _list_reference              '_atom_site_label'
    loop_ _enumeration
          _enumeration_detail    'yes'    'occupational modulation'
                                 'y'      'abbreviation for "yes"'
                                 'no'     'no occupational modulation'
                                 'n'      'abbreviation for "no"'
    _enumeration_default         'no'
    _definition
;              A code that signals whether the structural model includes the
               modulation of the occupation of a given atom site.
;

_atom_site_subsystem_code
CIF
A code that links a given atom or rigid-group site to one of the
subsystems present in a composite. This code provides an
alternative description for composites which is less explicit
than that based on linked data blocks (see the description in
this dictionary of _audit_link_[ms]). It must match one of
the labels specified for _cell_subsystem_code.
data_atom_site_subsystem_code
    _name                        '_atom_site_subsystem_code'
    _category                    atom_site
    _type                        char
    _list                        yes
    _list_reference              '_atom_site_label'
    _list_link_parent            '_cell_subsystem_code'
    _definition
;              A code that links a given atom or rigid-group site to one of the
               subsystems present in a composite. This code provides an
               alternative description for composites which is less explicit
               than that based on linked data blocks (see the description in
               this dictionary of _audit_link_[ms]). It must match one of
               the labels specified for _cell_subsystem_code.
;

_atom_site_U_modulation_flag
CIF
A code that signals whether the structural model includes the
modulation of the thermal parameters of a given atom
site.
data_atom_site_U_modulation_flag
    _name                        '_atom_site_U_modulation_flag'
    _category                    atom_site
    _type                        char
    _list                        yes
    _list_reference              '_atom_site_label'
    loop_ _enumeration
         _enumeration_detail     'yes' 'modulation of thermal parameters'
                                 'y'      'abbreviation for "yes"'
                                 'no'  'no modulation of thermal parameters'
                                 'n'      'abbreviation for "no"'
    _enumeration_default         'no'
    _definition
;              A code that signals whether the structural model includes the
               modulation of the thermal parameters of a given atom
               site.
;

################################
## ATOM_SITE_DISPLACE_FOURIER ##
################################

_ATOM_SITE_DISPLACE_FOURIER_[]
CIF
Data items in the ATOM_SITE_DISPLACE_FOURIER category record
details about the Fourier components of the displacive modulation
of an atom site in a modulated structure. In the case of rigid
groups, items in this category would only include the
translational part of the modulation. The rotational part would
appear in a separate list of items belonging to the
ATOM_SITE_ROT_FOURIER category. The (in general complex)
coefficients of each Fourier component belong to the category
ATOM_SITE_DISPLACE_FOURIER_PARAM and are listed separately.
Examples:
loop_
         _atom_site_Fourier_wave_vector_seq_id
         _atom_site_Fourier_wave_vector_x
         _atom_site_Fourier_wave_vector_description
              1       0.568           'First harmonic'
              2       1.136           'Second harmonic'
     loop_
         _atom_site_displace_Fourier_id
         _atom_site_displace_Fourier_atom_site_label
         _atom_site_displace_Fourier_axis
         _atom_site_displace_Fourier_wave_vector_seq_id
              Nb1z1   Nb1     z       1
              Nb1x2   Nb1     x       2
              Nb1y2   Nb1     y       2
              S1x1    S1      x       1
              S1y1    S1      y       1
              S1z1    S1      z       1
              S1x2    S1      x       2
              S1y2    S1      y       2
              S1z2    S1      z       2
# NbS2 subsystem has been chosen as reference, i.e. its
# W matrix is the unit matrix.
     loop_
         _cell_subsystem_code
         _cell_subsystem_description
         _cell_subsystem_matrix_W_1_1
         _cell_subsystem_matrix_W_1_4
         _cell_subsystem_matrix_W_2_2
         _cell_subsystem_matrix_W_3_3
         _cell_subsystem_matrix_W_4_1
         _cell_subsystem_matrix_W_4_4
              NbS2   '1st subsystem'  1 0 1 1 0 1
              LaS    '2nd subsystem'  0 1 1 1 1 0
# The modulation wave vectors are referred to the reciprocal
# basis of each subsystem. They are related to the reciprocal
# basis used to index the whole diffraction pattern through
# the W matrices.
     loop_
         _atom_site_Fourier_wave_vector_seq_id
         _atom_site_Fourier_wave_vector_x
         _atom_site_Fourier_wave_vector_z
         _atom_site_Fourier_wave_vector_description
              1      0.568     0      'First harmonic'
              2      1.136     0      'Second harmonic'
              3      1.761     0.5    'First harmonic'
              4      3.522     1.0    'Second harmonic'
# The modulation coefficients given below are referred to
# each subsystem.
     loop_
         _atom_site_displace_Fourier_id
         _atom_site_displace_Fourier_atom_site_label
         _atom_site_displace_Fourier_axis
         _atom_site_displace_Fourier_wave_vector_seq_id
              Nb1z1_NbS2    Nb1     z    1
              Nb1x2_NbS2    Nb1     x    2
              Nb1y2_NbS2    Nb1     y    2
              S1x1_NbS2     S1      x    1
              S1y1_NbS2     S1      y    1
              S1z1_NbS2     S1      z    1
              S1x2_NbS2     S1      x    2
              S1y2_NbS2     S1      y    2
              S1z2_NbS2     S1      z    2
              La1x3_LaS     La1     x    3
              La1y3_LaS     La1     y    3
              La1z3_LaS     La1     z    3
              La1x4_LaS     La1     x    4
              La1y4_LaS     La1     y    4
              La1z4_LaS     La1     z    4
              S2x3_LaS      S2      x    3
              S2y3_LaS      S2      y    3
              S2z3_LaS      S2      z    3
              S2x4_LaS      S2      x    4
              S2y4_LaS      S2      y    4
              S2z4_LaS      S2      z    4
#
# The same structural data but expressed using a set of
# linked data blocks
#
# Items concerning the modulated structure of the first
# subsystem
data_LaSNbS2_MOD_NbS2
     _audit_block_code         1997-07-24|LaSNbS2|G.M.|_MOD_NbS2
     loop_
         _audit_link_block_code
         _audit_link_block_description
1997-07-24|LaSNbS2|G.M.|
                  'common experimental and publication data'
1997-07-24|LaSNbS2|G.M.|_REFRNCE
                         'reference structure (common data)'
1997-07-21|LaSNbS2|G.M.|_MOD
                         'modulated structure (common data)'
1997-07-24|LaSNbS2|G.M.|_REFRNCE_NbS2
                       'reference structure (1st subsystem)'
.                      'modulated structure (1st subsystem)'
1997-07-24|LaSNbS2|G.M.|_REFRNCE_LaS
                       'reference structure (2nd subsystem)'
1997-07-21|LaSNbS2|G.M.|_MOD_LaS
                       'modulated structure (2nd subsystem)'
     loop_
         _atom_site_Fourier_wave_vector_seq_id
         _atom_site_Fourier_wave_vector_x
         _atom_site_Fourier_wave_vector_description
              1      0.568     'First harmonic'
              2      1.136     'Second harmonic'
     loop_
         _atom_site_displace_Fourier_id
         _atom_site_displace_Fourier_atom_site_label
         _atom_site_displace_Fourier_axis
         _atom_site_displace_Fourier_wave_vector_seq_id
              Nb1z1   Nb1     z       1
              Nb1x2   Nb1     x       2
              Nb1y2   Nb1     y       2
              S1x1    S1      x       1
              S1y1    S1      y       1
              S1z1    S1      z       1
              S1x2    S1      x       2
              S1y2    S1      y       2
              S1z2    S1      z       2
#### End of modulated structure first subsystem data ######
# Items concerning the modulated structure of the second
# subsystem
data_LaSNbS2_MOD_LaS
     _audit_block_code          1997-07-24|LaSNbS2|G.M.|_MOD_LaS
     loop_
         _audit_link_block_code
         _audit_link_block_description
1997-07-24|LaSNbS2|G.M.|
                  'common experimental and publication data'
1997-07-24|LaSNbS2|G.M.|_REFRNCE
                         'reference structure (common data)'
1997-07-21|LaSNbS2|G.M.|_MOD
                         'modulated structure (common data)'
1997-07-24|LaSNbS2|G.M.|_REFRNCE_NbS2
                       'reference structure (1st subsystem)'
1997-07-21|LaSNbS2|G.M.|_MOD_NbS2
                       'modulated structure (1st subsystem)'
1997-07-24|LaSNbS2|G.M.|_REFRNCE_LaS
                       'reference structure (2nd subsystem)'
.                      'modulated structure (2nd subsystem)'
     loop_
         _atom_site_Fourier_wave_vector_seq_id
         _atom_site_Fourier_wave_vector_x
         _atom_site_Fourier_wave_vector_z
         _atom_site_Fourier_wave_vector_description
              1      1.761   0.5   'First harmonic'
              2      3.522   1.0   'Second harmonic'
     loop_
         _atom_site_displace_Fourier_id
         _atom_site_displace_Fourier_atom_site_label
         _atom_site_displace_Fourier_axis
         _atom_site_displace_Fourier_wave_vector_seq_id
              La1x1   La1     x       1
              La1y1   La1     y       1
              La1z1   La1     z       1
              La1x2   La1     x       2
              La1y2   La1     y       2
              La1z2   La1     z       2
              S2x1    S2      x       1
              S2y1    S2      y       1
              S2z1    S2      z       1
              S2x2    S2      x       2
              S2y2    S2      y       2
              S2z2    S2      z       2
### End of modulated structure second subsystem data ######
_atom_sites_displace_Fourier_axes_description
     ;   a1 and a2 are respectively the long molecular axis
         and the axis normal to the mean molecular plane.
     ;
     loop_
         _atom_site_displace_Fourier_id
         _atom_site_displace_Fourier_atom_site_label
         _atom_site_displace_Fourier_axis
         _atom_site_displace_Fourier_wave_vector_seq_id
              Byphenyl_a1_1    Biphenyl  a1    1
data_atom_site_displace_Fourier_[]
    _name                        '_atom_site_displace_Fourier_[]'
    _category                    category_overview
    _type                        null
    loop_ _example
          _example_detail
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
;
     loop_
         _atom_site_Fourier_wave_vector_seq_id
         _atom_site_Fourier_wave_vector_x
         _atom_site_Fourier_wave_vector_description
              1       0.568           'First harmonic'
              2       1.136           'Second harmonic'

     loop_
         _atom_site_displace_Fourier_id
         _atom_site_displace_Fourier_atom_site_label
         _atom_site_displace_Fourier_axis
         _atom_site_displace_Fourier_wave_vector_seq_id
              Nb1z1   Nb1     z       1
              Nb1x2   Nb1     x       2
              Nb1y2   Nb1     y       2
              S1x1    S1      x       1
              S1y1    S1      y       1
              S1z1    S1      z       1
              S1x2    S1      x       2
              S1y2    S1      y       2
              S1z2    S1      z       2
;
;
    Example 1 - based on the modulated structure of inorganic misfit layer
    (LaS)~1.14~NbS~2~ [Smaalen, S. van (1991). J. Phys. Condens.
    Matter, 3, 1247-1263].
;
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
;
# NbS2 subsystem has been chosen as reference, i.e. its
# W matrix is the unit matrix.

     loop_
         _cell_subsystem_code
         _cell_subsystem_description
         _cell_subsystem_matrix_W_1_1
         _cell_subsystem_matrix_W_1_4
         _cell_subsystem_matrix_W_2_2
         _cell_subsystem_matrix_W_3_3
         _cell_subsystem_matrix_W_4_1
         _cell_subsystem_matrix_W_4_4
              NbS2   '1st subsystem'  1 0 1 1 0 1
              LaS    '2nd subsystem'  0 1 1 1 1 0

# The modulation wave vectors are referred to the reciprocal
# basis of each subsystem. They are related to the reciprocal
# basis used to index the whole diffraction pattern through
# the W matrices.

     loop_
         _atom_site_Fourier_wave_vector_seq_id
         _atom_site_Fourier_wave_vector_x
         _atom_site_Fourier_wave_vector_z
         _atom_site_Fourier_wave_vector_description
              1      0.568     0      'First harmonic'
              2      1.136     0      'Second harmonic'
              3      1.761     0.5    'First harmonic'
              4      3.522     1.0    'Second harmonic'

# The modulation coefficients given below are referred to
# each subsystem.

     loop_
         _atom_site_displace_Fourier_id
         _atom_site_displace_Fourier_atom_site_label
         _atom_site_displace_Fourier_axis
         _atom_site_displace_Fourier_wave_vector_seq_id
              Nb1z1_NbS2    Nb1     z    1
              Nb1x2_NbS2    Nb1     x    2
              Nb1y2_NbS2    Nb1     y    2
              S1x1_NbS2     S1      x    1
              S1y1_NbS2     S1      y    1
              S1z1_NbS2     S1      z    1
              S1x2_NbS2     S1      x    2
              S1y2_NbS2     S1      y    2
              S1z2_NbS2     S1      z    2
              La1x3_LaS     La1     x    3
              La1y3_LaS     La1     y    3
              La1z3_LaS     La1     z    3
              La1x4_LaS     La1     x    4
              La1y4_LaS     La1     y    4
              La1z4_LaS     La1     z    4
              S2x3_LaS      S2      x    3
              S2y3_LaS      S2      y    3
              S2z3_LaS      S2      z    3
              S2x4_LaS      S2      x    4
              S2y4_LaS      S2      y    4
              S2z4_LaS      S2      z    4
;
;
    Example 2 - based on the modulated structure of inorganic misfit layer
    (LaS)~1.14~NbS~2~ [Smaalen, S. van (1991). J. Phys. Condens.
    Matter, 3, 1247-1263].
;
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
;
#
# The same structural data but expressed using a set of
# linked data blocks
#

# Items concerning the modulated structure of the first
# subsystem

data_LaSNbS2_MOD_NbS2

     _audit_block_code         1997-07-24|LaSNbS2|G.M.|_MOD_NbS2

     loop_
         _audit_link_block_code
         _audit_link_block_description
1997-07-24|LaSNbS2|G.M.|
                  'common experimental and publication data'
1997-07-24|LaSNbS2|G.M.|_REFRNCE
                         'reference structure (common data)'
1997-07-21|LaSNbS2|G.M.|_MOD
                         'modulated structure (common data)'
1997-07-24|LaSNbS2|G.M.|_REFRNCE_NbS2
                       'reference structure (1st subsystem)'
.                      'modulated structure (1st subsystem)'
1997-07-24|LaSNbS2|G.M.|_REFRNCE_LaS
                       'reference structure (2nd subsystem)'
1997-07-21|LaSNbS2|G.M.|_MOD_LaS
                       'modulated structure (2nd subsystem)'

     loop_
         _atom_site_Fourier_wave_vector_seq_id
         _atom_site_Fourier_wave_vector_x
         _atom_site_Fourier_wave_vector_description
              1      0.568     'First harmonic'
              2      1.136     'Second harmonic'

     loop_
         _atom_site_displace_Fourier_id
         _atom_site_displace_Fourier_atom_site_label
         _atom_site_displace_Fourier_axis
         _atom_site_displace_Fourier_wave_vector_seq_id
              Nb1z1   Nb1     z       1
              Nb1x2   Nb1     x       2
              Nb1y2   Nb1     y       2
              S1x1    S1      x       1
              S1y1    S1      y       1
              S1z1    S1      z       1
              S1x2    S1      x       2
              S1y2    S1      y       2
              S1z2    S1      z       2

#### End of modulated structure first subsystem data ######

# Items concerning the modulated structure of the second
# subsystem

data_LaSNbS2_MOD_LaS

     _audit_block_code          1997-07-24|LaSNbS2|G.M.|_MOD_LaS

     loop_
         _audit_link_block_code
         _audit_link_block_description
1997-07-24|LaSNbS2|G.M.|
                  'common experimental and publication data'
1997-07-24|LaSNbS2|G.M.|_REFRNCE
                         'reference structure (common data)'
1997-07-21|LaSNbS2|G.M.|_MOD
                         'modulated structure (common data)'
1997-07-24|LaSNbS2|G.M.|_REFRNCE_NbS2
                       'reference structure (1st subsystem)'
1997-07-21|LaSNbS2|G.M.|_MOD_NbS2
                       'modulated structure (1st subsystem)'
1997-07-24|LaSNbS2|G.M.|_REFRNCE_LaS
                       'reference structure (2nd subsystem)'
.                      'modulated structure (2nd subsystem)'

     loop_
         _atom_site_Fourier_wave_vector_seq_id
         _atom_site_Fourier_wave_vector_x
         _atom_site_Fourier_wave_vector_z
         _atom_site_Fourier_wave_vector_description
              1      1.761   0.5   'First harmonic'
              2      3.522   1.0   'Second harmonic'

     loop_
         _atom_site_displace_Fourier_id
         _atom_site_displace_Fourier_atom_site_label
         _atom_site_displace_Fourier_axis
         _atom_site_displace_Fourier_wave_vector_seq_id
              La1x1   La1     x       1
              La1y1   La1     y       1
              La1z1   La1     z       1
              La1x2   La1     x       2
              La1y2   La1     y       2
              La1z2   La1     z       2
              S2x1    S2      x       1
              S2y1    S2      y       1
              S2z1    S2      z       1
              S2x2    S2      x       2
              S2y2    S2      y       2
              S2z2    S2      z       2

### End of modulated structure second subsystem data ######
;
;
    Example 3 - based on the modulated structure of inorganic misfit layer
    (LaS)~1.14~NbS~2~ [Smaalen, S. van (1991). J. Phys. Condens.
    Matter, 3, 1247-1263].
;
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
;
     _atom_sites_displace_Fourier_axes_description
     ;   a1 and a2 are respectively the long molecular axis
         and the axis normal to the mean molecular plane.
     ;

     loop_
         _atom_site_displace_Fourier_id
         _atom_site_displace_Fourier_atom_site_label
         _atom_site_displace_Fourier_axis
         _atom_site_displace_Fourier_wave_vector_seq_id
              Byphenyl_a1_1    Biphenyl  a1    1
;
;
    Example 4 - extracted from Baudour & Sanquer [Acta Cryst. (1983), B39,
                75-84]. Note the entry from the ATOM_SITES_DISPLACE_FOURIER
                category to describe collective information relating to all
                the atom sites.
;
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

    _definition
;              Data items in the ATOM_SITE_DISPLACE_FOURIER category record
               details about the Fourier components of the displacive modulation
               of an atom site in a modulated structure. In the case of rigid
               groups, items in this category would only include the
               translational part of the modulation. The rotational part would
               appear in a separate list of items belonging to the
               ATOM_SITE_ROT_FOURIER category. The (in general complex)
               coefficients of each Fourier component belong to the category
               ATOM_SITE_DISPLACE_FOURIER_PARAM and are listed separately.
;

_atom_site_displace_Fourier_atom_site_label
CIF
Modulation parameters are usually looped in separate lists.
Modulated parameters are the atom positions (displacive
modulation), the atomic occupation (occupational modulation)
and/or the atomic anisotropic (or isotropic) displacement
parameters (referred to as modulation of thermal parameters,
since the term 'displacement parameters' is ambiguous in this
context).  _atom_site_displace_Fourier_atom_site_label is the
code that identifies an atom or rigid group in a loop in which
the Fourier components of its displacive modulation are listed.
In the case of a rigid group, this list would only include the
translational part of its displacive modulation. The rotational
part (if any) would appear in a separate list (see
_atom_site_rot_Fourier_atom_site_label). This code must match
the _atom_site_label of the associated coordinate list and
conform to the rules described in _atom_site_label.
data_atom_site_displace_Fourier_atom_site_label
    _name                        '_atom_site_displace_Fourier_atom_site_label'
    _category                    atom_site_displace_Fourier
    _type                        char
    _list                        yes
    _list_reference              '_atom_site_displace_Fourier_id'
    _list_link_parent            '_atom_site_label'

    _definition
;              Modulation parameters are usually looped in separate lists.
               Modulated parameters are the atom positions (displacive
               modulation), the atomic occupation (occupational modulation)
               and/or the atomic anisotropic (or isotropic) displacement
               parameters (referred to as modulation of thermal parameters,
               since the term 'displacement parameters' is ambiguous in this
               context).  _atom_site_displace_Fourier_atom_site_label is the
               code that identifies an atom or rigid group in a loop in which
               the Fourier components of its displacive modulation are listed.
               In the case of a rigid group, this list would only include the
               translational part of its displacive modulation. The rotational
               part (if any) would appear in a separate list (see
               _atom_site_rot_Fourier_atom_site_label). This code must match
               the _atom_site_label of the associated coordinate list and
               conform to the rules described in _atom_site_label.
;

_atom_site_displace_Fourier_axis
CIF
A label identifying the displacement component of a given atom
or rigid group that is being parameterized by Fourier series. a,
b and c are the basic lattice vectors of the reference structure.
For composites they refer to the reference structure of each
subsystem. a1, a2 and a3 are defined by
_atom_sites_displace_Fourier_axes_description.
data_atom_site_displace_Fourier_axis
    _name                        '_atom_site_displace_Fourier_axis'
    _category                    atom_site_displace_Fourier
    _type                        char
    _list                        yes
    _list_reference              '_atom_site_displace_Fourier_id'
    loop_ _enumeration
          _enumeration_detail    x  'displacement along the a axis'
                                 y  'displacement along the b axis'
                                 z  'displacement along the c axis'
                                 a1 'displacement along an arbitrary a1 axis'
                                 a2 'displacement along an arbitrary a2 axis'
                                 a3 'displacement along an arbitrary a3 axis'
    _definition
;              A label identifying the displacement component of a given atom
               or rigid group that is being parameterized by Fourier series. a,
               b and c are the basic lattice vectors of the reference structure.
               For composites they refer to the reference structure of each
               subsystem. a1, a2 and a3 are defined by
               _atom_sites_displace_Fourier_axes_description.
;

_atom_site_displace_Fourier_id
CIF
A code identifying each component of the displacive modulation of
a given atom or rigid group when the modulation is expressed in
terms of Fourier series. In the case of a rigid group, it
applies only to the translational part of the distortion.
data_atom_site_displace_Fourier_id
    _name                        '_atom_site_displace_Fourier_id'
    _category                    atom_site_displace_Fourier
    _type                        char
    _list                        yes
    _list_mandatory              yes
    _list_link_child             '_atom_site_displace_Fourier_param_id'
    _definition
;              A code identifying each component of the displacive modulation of
               a given atom or rigid group when the modulation is expressed in
               terms of Fourier series. In the case of a rigid group, it
               applies only to the translational part of the distortion.
;

_atom_site_displace_Fourier_wave_vector_seq_id
CIF
A numeric code identifying the wave vectors of the Fourier terms
used in the structural model to describe the displacive
modulation of an atom or rigid group. In the case of a rigid
group, it applies only to the translational part of the
distortion. This code must match
_atom_site_Fourier_wave_vector_seq_id.
data_atom_site_displace_Fourier_wave_vector_seq_id
    _name                       '_atom_site_displace_Fourier_wave_vector_seq_id'
    _category                   atom_site_displace_Fourier
    _type                       numb
    _list                       yes
    _list_reference             '_atom_site_displace_Fourier_id'
    _list_link_parent           '_atom_site_Fourier_wave_vector_seq_id'
    _definition
;              A numeric code identifying the wave vectors of the Fourier terms
               used in the structural model to describe the displacive
               modulation of an atom or rigid group. In the case of a rigid
               group, it applies only to the translational part of the
               distortion. This code must match
               _atom_site_Fourier_wave_vector_seq_id.
;

######################################
## ATOM_SITE_DISPLACE_FOURIER_PARAM ##
######################################

_ATOM_SITE_DISPLACE_FOURIER_PARAM_[]
CIF
Data items in the ATOM_SITE_DISPLACE_FOURIER_PARAM category
record details about the coefficients of the Fourier series
used to describe the displacive modulation of an atom or rigid
group. In the case of rigid groups, items in this category would
only include the translational part of the modulation. The
rotational part would appear in a separate list of items
belonging to the ATOM_SITE_ROT_FOURIER_PARAM category. The
Fourier components are defined in the category
ATOM_SITE_DISPLACE_FOURIER and are listed separately.
Examples:
loop_
         _atom_site_Fourier_wave_vector_seq_id
         _atom_site_Fourier_wave_vector_x
         _atom_site_Fourier_wave_vector_description
              1       0.568           'First harmonic'
              2       1.136           'Second harmonic'
     loop_
         _atom_site_displace_Fourier_id
         _atom_site_displace_Fourier_atom_site_label
         _atom_site_displace_Fourier_axis
         _atom_site_displace_Fourier_wave_vector_seq_id
              Nb1z1   Nb1     z       1
              Nb1x2   Nb1     x       2
              Nb1y2   Nb1     y       2
              S1x1    S1      x       1
              S1y1    S1      y       1
              S1z1    S1      z       1
              S1x2    S1      x       2
              S1y2    S1      y       2
              S1z2    S1      z       2
     loop_
         _atom_site_displace_Fourier_param_id
         _atom_site_displace_Fourier_param_cos
         _atom_site_displace_Fourier_param_sin
              Nb1z1   -0.0006(2)   0.
              Nb1x2    0.          0.0078(17)
              Nb1y2   -0.0014(7)   0.
              S1x1     0.         -0.0134(85)
              S1y1    -0.0022(12)  0.
              S1z1     0.0014(14)  0.
              S1x2     0.         -0.0129(27)
              S1y2    -0.0073(27)  0.
              S1z2    -0.0012(3)   0.
# NbS2 subsystem has been chosen as reference, i.e. its
# W matrix is the unit matrix.
     loop_
         _cell_subsystem_code
         _cell_subsystem_description
         _cell_subsystem_matrix_W_1_1
         _cell_subsystem_matrix_W_1_4
         _cell_subsystem_matrix_W_2_2
         _cell_subsystem_matrix_W_3_3
         _cell_subsystem_matrix_W_4_1
         _cell_subsystem_matrix_W_4_4
              NbS2   '1st subsystem'  1 0 1 1 0 1
              LaS    '2nd subsystem'  0 1 1 1 1 0
# The modulation wave vectors are referred to the reciprocal
# basis of each subsystem. They are related to the reciprocal
# basis used to index the whole diffraction pattern through
# the W matrices.
     loop_
         _atom_site_Fourier_wave_vector_seq_id
         _atom_site_Fourier_wave_vector_x
         _atom_site_Fourier_wave_vector_z
         _atom_site_Fourier_wave_vector_description
              1      0.568     0      'First harmonic'
              2      1.136     0      'Second harmonic'
              3      1.761     0.5    'First harmonic'
              4      3.522     1.0    'Second harmonic'
# The modulation coefficients given below are referred to
# each subsystem.
     loop_
         _atom_site_displace_Fourier_id
         _atom_site_displace_Fourier_atom_site_label
         _atom_site_displace_Fourier_axis
         _atom_site_displace_Fourier_wave_vector_seq_id
              Nb1z1_NbS2    Nb1     z    1
              Nb1x2_NbS2    Nb1     x    2
              Nb1y2_NbS2    Nb1     y    2
              S1x1_NbS2     S1      x    1
              S1y1_NbS2     S1      y    1
              S1z1_NbS2     S1      z    1
              S1x2_NbS2     S1      x    2
              S1y2_NbS2     S1      y    2
              S1z2_NbS2     S1      z    2
              La1x3_LaS     La1     x    3
              La1y3_LaS     La1     y    3
              La1z3_LaS     La1     z    3
              La1x4_LaS     La1     x    4
              La1y4_LaS     La1     y    4
              La1z4_LaS     La1     z    4
              S2x3_LaS      S2      x    3
              S2y3_LaS      S2      y    3
              S2z3_LaS      S2      z    3
              S2x4_LaS      S2      x    4
              S2y4_LaS      S2      y    4
              S2z4_LaS      S2      z    4
     loop_
         _atom_site_displace_Fourier_param_id
         _atom_site_displace_Fourier_param_cos
         _atom_site_displace_Fourier_param_sin
              Nb1z1_NbS2   -0.0006(2)      0.
              Nb1x2_NbS2    0.             0.0078(17)
              Nb1y2_NbS2   -0.0014(7)      0.
              S1x1_NbS2     0.            -0.0134(85)
              S1y1_NbS2    -0.0022(12)     0.
              S1z1_NbS2     0.0014(14)     0.
              S1x2_NbS2     0.            -0.0129(27)
              S1y2_NbS2    -0.0073(27)     0.
              S1z2_NbS2    -0.0012(3)      0.
              La1x3_LaS     0.            -0.0010(22)
              La1y3_LaS     0.0174(4)      0.
              La1z3_LaS    -0.0005(3)      0.
              La1x4_LaS     0.             0.0144(7)
              La1y4_LaS     0.0001(14)     0.
              La1z4_LaS     0.0008(3)      0.
              S2x3_LaS      0.             0.0059(70)
              S2y3_LaS      0.0081(16)     0.
              S2z3_LaS      0.0009(12)     0.
              S2x4_LaS      0.            -0.0030(30)
              S2y4_LaS      0.0002(56)     0.
              S2z4_LaS      0.0007(10)     0.
#
# The same structural data but expressed using a set of linked data blocks
#
# Items concerning the modulated structure of the first
# subsystem
data_LaSNbS2_MOD_NbS2
     _audit_block_code         1997-07-24|LaSNbS2|G.M.|_MOD_NbS2
     loop_
         _audit_link_block_code
         _audit_link_block_description
1997-07-24|LaSNbS2|G.M.|
                      'common experimental and publication data'
1997-07-24|LaSNbS2|G.M.|_REFRNCE
                             'reference structure (common data)'
1997-07-21|LaSNbS2|G.M.|_MOD
                             'modulated structure (common data)'
1997-07-24|LaSNbS2|G.M.|_REFRNCE_NbS2
                           'reference structure (1st subsystem)'
.                          'modulated structure (1st subsystem)'
1997-07-24|LaSNbS2|G.M.|_REFRNCE_LaS
                           'reference structure (2nd subsystem)'
1997-07-21|LaSNbS2|G.M.|_MOD_LaS
                           'modulated structure (2nd subsystem)'
     loop_
         _atom_site_Fourier_wave_vector_seq_id
         _atom_site_Fourier_wave_vector_x
         _atom_site_Fourier_wave_vector_description
              1      0.568     'First harmonic'
              2      1.136     'Second harmonic'
     loop_
         _atom_site_displace_Fourier_id
         _atom_site_displace_Fourier_atom_site_label
         _atom_site_displace_Fourier_axis
         _atom_site_displace_Fourier_wave_vector_seq_id
              Nb1z1   Nb1     z       1
              Nb1x2   Nb1     x       2
              Nb1y2   Nb1     y       2
              S1x1    S1      x       1
              S1y1    S1      y       1
              S1z1    S1      z       1
              S1x2    S1      x       2
              S1y2    S1      y       2
              S1z2    S1      z       2
     loop_
         _atom_site_displace_Fourier_param_id
         _atom_site_displace_Fourier_param_cos
         _atom_site_displace_Fourier_param_sin
              Nb1z1  -0.0006(2)      0.
              Nb1x2   0.             0.0078(17)
              Nb1y2  -0.0014(7)      0.
              S1x1    0.            -0.0134(85)
              S1y1   -0.0022(12)     0.
              S1z1    0.0014(14)     0.
              S1x2    0.            -0.0129(27)
              S1y2   -0.0073(27)     0.
              S1z2   -0.0012(3)      0.
#### End of modulated structure first subsystem data ######
# Items concerning the modulated structure of the second
# subsystem
data_LaSNbS2_MOD_LaS
     _audit_block_code          1997-07-24|LaSNbS2|G.M.|_MOD_LaS
     loop_
         _audit_link_block_code
         _audit_link_block_description
1997-07-24|LaSNbS2|G.M.|
                      'common experimental and publication data'
1997-07-24|LaSNbS2|G.M.|_REFRNCE
                             'reference structure (common data)'
1997-07-21|LaSNbS2|G.M.|_MOD
                             'modulated structure (common data)'
1997-07-24|LaSNbS2|G.M.|_REFRNCE_NbS2
                           'reference structure (1st subsystem)'
1997-07-21|LaSNbS2|G.M.|_MOD_NbS2
                           'modulated structure (1st subsystem)'
1997-07-24|LaSNbS2|G.M.|_REFRNCE_LaS
                           'reference structure (2nd subsystem)'
.                          'modulated structure (2nd subsystem)'
     loop_
         _atom_site_Fourier_wave_vector_seq_id
         _atom_site_Fourier_wave_vector_x
         _atom_site_Fourier_wave_vector_z
         _atom_site_Fourier_wave_vector_description
              1      1.761   0.5   'First harmonic'
              2      3.522   1.0   'Second harmonic'
     loop_
         _atom_site_displace_Fourier_id
         _atom_site_displace_Fourier_atom_site_label
         _atom_site_displace_Fourier_axis
         _atom_site_displace_Fourier_wave_vector_seq_id
              La1x1   La1     x       1
              La1y1   La1     y       1
              La1z1   La1     z       1
              La1x2   La1     x       2
              La1y2   La1     y       2
              La1z2   La1     z       2
              S2x1    S2      x       1
              S2y1    S2      y       1
              S2z1    S2      z       1
              S2x2    S2      x       2
              S2y2    S2      y       2
              S2z2    S2      z       2
     loop_
         _atom_site_displace_Fourier_param_id
         _atom_site_displace_Fourier_param_cos
         _atom_site_displace_Fourier_param_sin
              La1x1   0.            -0.0010(22)
              La1y1   0.0174(4)      0.
              La1z1  -0.0005(3)      0.
              La1x2   0.             0.0144(7)
              La1y2   0.0001(14)     0.
              La1z2   0.0008(3)      0.
              S2x1    0.             0.0059(70)
              S2y1    0.0081(16)     0.
              S2z1    0.0009(12)     0.
              S2x2    0.            -0.0030(30)
              S2y2    0.0002(56)     0.
              S2z2    0.0007(10)     0.
### End of modulated structure second subsystem data ######
_atom_sites_displace_Fourier_axes_description
     ;   a1 and a2 are respectively the long molecular axis
         and the axis normal to the mean molecular plane.
     ;
     loop_
         _atom_site_displace_Fourier_id
         _atom_site_displace_Fourier_atom_site_label
         _atom_site_displace_Fourier_axis
         _atom_site_displace_Fourier_wave_vector_seq_id
              Byphenyl_a1_1    Biphenyl  a1    1
     loop_
         _atom_site_displace_Fourier_param_id
         _atom_site_displace_Fourier_param_modulus
         _atom_site_displace_Fourier_param_phase
              Byphenyl_a1_1    0.035(5)       0.
data_atom_site_displace_Fourier_param_[]
    _name                        '_atom_site_displace_Fourier_param_[]'
    _category                    category_overview
    _type                        null
    loop_ _example
          _example_detail
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
;
     loop_
         _atom_site_Fourier_wave_vector_seq_id
         _atom_site_Fourier_wave_vector_x
         _atom_site_Fourier_wave_vector_description
              1       0.568           'First harmonic'
              2       1.136           'Second harmonic'

     loop_
         _atom_site_displace_Fourier_id
         _atom_site_displace_Fourier_atom_site_label
         _atom_site_displace_Fourier_axis
         _atom_site_displace_Fourier_wave_vector_seq_id
              Nb1z1   Nb1     z       1
              Nb1x2   Nb1     x       2
              Nb1y2   Nb1     y       2
              S1x1    S1      x       1
              S1y1    S1      y       1
              S1z1    S1      z       1
              S1x2    S1      x       2
              S1y2    S1      y       2
              S1z2    S1      z       2

     loop_
         _atom_site_displace_Fourier_param_id
         _atom_site_displace_Fourier_param_cos
         _atom_site_displace_Fourier_param_sin
              Nb1z1   -0.0006(2)   0.
              Nb1x2    0.          0.0078(17)
              Nb1y2   -0.0014(7)   0.
              S1x1     0.         -0.0134(85)
              S1y1    -0.0022(12)  0.
              S1z1     0.0014(14)  0.
              S1x2     0.         -0.0129(27)
              S1y2    -0.0073(27)  0.
              S1z2    -0.0012(3)   0.
;
;
    Example 1 - based on the modulated structure of inorganic misfit layer
    (LaS)~1.14~NbS~2~ [Smaalen, S. van (1991). J. Phys. Condens.
    Matter, 3, 1247-1263].
;
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
;
# NbS2 subsystem has been chosen as reference, i.e. its
# W matrix is the unit matrix.

     loop_
         _cell_subsystem_code
         _cell_subsystem_description
         _cell_subsystem_matrix_W_1_1
         _cell_subsystem_matrix_W_1_4
         _cell_subsystem_matrix_W_2_2
         _cell_subsystem_matrix_W_3_3
         _cell_subsystem_matrix_W_4_1
         _cell_subsystem_matrix_W_4_4
              NbS2   '1st subsystem'  1 0 1 1 0 1
              LaS    '2nd subsystem'  0 1 1 1 1 0

# The modulation wave vectors are referred to the reciprocal
# basis of each subsystem. They are related to the reciprocal
# basis used to index the whole diffraction pattern through
# the W matrices.

     loop_
         _atom_site_Fourier_wave_vector_seq_id
         _atom_site_Fourier_wave_vector_x
         _atom_site_Fourier_wave_vector_z
         _atom_site_Fourier_wave_vector_description
              1      0.568     0      'First harmonic'
              2      1.136     0      'Second harmonic'
              3      1.761     0.5    'First harmonic'
              4      3.522     1.0    'Second harmonic'

# The modulation coefficients given below are referred to
# each subsystem.

     loop_
         _atom_site_displace_Fourier_id
         _atom_site_displace_Fourier_atom_site_label
         _atom_site_displace_Fourier_axis
         _atom_site_displace_Fourier_wave_vector_seq_id
              Nb1z1_NbS2    Nb1     z    1
              Nb1x2_NbS2    Nb1     x    2
              Nb1y2_NbS2    Nb1     y    2
              S1x1_NbS2     S1      x    1
              S1y1_NbS2     S1      y    1
              S1z1_NbS2     S1      z    1
              S1x2_NbS2     S1      x    2
              S1y2_NbS2     S1      y    2
              S1z2_NbS2     S1      z    2
              La1x3_LaS     La1     x    3
              La1y3_LaS     La1     y    3
              La1z3_LaS     La1     z    3
              La1x4_LaS     La1     x    4
              La1y4_LaS     La1     y    4
              La1z4_LaS     La1     z    4
              S2x3_LaS      S2      x    3
              S2y3_LaS      S2      y    3
              S2z3_LaS      S2      z    3
              S2x4_LaS      S2      x    4
              S2y4_LaS      S2      y    4
              S2z4_LaS      S2      z    4

     loop_
         _atom_site_displace_Fourier_param_id
         _atom_site_displace_Fourier_param_cos
         _atom_site_displace_Fourier_param_sin
              Nb1z1_NbS2   -0.0006(2)      0.
              Nb1x2_NbS2    0.             0.0078(17)
              Nb1y2_NbS2   -0.0014(7)      0.
              S1x1_NbS2     0.            -0.0134(85)
              S1y1_NbS2    -0.0022(12)     0.
              S1z1_NbS2     0.0014(14)     0.
              S1x2_NbS2     0.            -0.0129(27)
              S1y2_NbS2    -0.0073(27)     0.
              S1z2_NbS2    -0.0012(3)      0.
              La1x3_LaS     0.            -0.0010(22)
              La1y3_LaS     0.0174(4)      0.
              La1z3_LaS    -0.0005(3)      0.
              La1x4_LaS     0.             0.0144(7)
              La1y4_LaS     0.0001(14)     0.
              La1z4_LaS     0.0008(3)      0.
              S2x3_LaS      0.             0.0059(70)
              S2y3_LaS      0.0081(16)     0.
              S2z3_LaS      0.0009(12)     0.
              S2x4_LaS      0.            -0.0030(30)
              S2y4_LaS      0.0002(56)     0.
              S2z4_LaS      0.0007(10)     0.
;
;
    Example 2 - based on the modulated structure of inorganic misfit layer
    (LaS)~1.14~NbS~2~ [Smaalen, S. van (1991). J. Phys. Condens.
    Matter, 3, 1247-1263].
;
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
;
#
# The same structural data but expressed using a set of linked data blocks
#

# Items concerning the modulated structure of the first
# subsystem

data_LaSNbS2_MOD_NbS2

     _audit_block_code         1997-07-24|LaSNbS2|G.M.|_MOD_NbS2

     loop_
         _audit_link_block_code
         _audit_link_block_description
1997-07-24|LaSNbS2|G.M.|
                      'common experimental and publication data'
1997-07-24|LaSNbS2|G.M.|_REFRNCE
                             'reference structure (common data)'
1997-07-21|LaSNbS2|G.M.|_MOD
                             'modulated structure (common data)'
1997-07-24|LaSNbS2|G.M.|_REFRNCE_NbS2
                           'reference structure (1st subsystem)'
.                          'modulated structure (1st subsystem)'
1997-07-24|LaSNbS2|G.M.|_REFRNCE_LaS
                           'reference structure (2nd subsystem)'
1997-07-21|LaSNbS2|G.M.|_MOD_LaS
                           'modulated structure (2nd subsystem)'


     loop_
         _atom_site_Fourier_wave_vector_seq_id
         _atom_site_Fourier_wave_vector_x
         _atom_site_Fourier_wave_vector_description
              1      0.568     'First harmonic'
              2      1.136     'Second harmonic'

     loop_
         _atom_site_displace_Fourier_id
         _atom_site_displace_Fourier_atom_site_label
         _atom_site_displace_Fourier_axis
         _atom_site_displace_Fourier_wave_vector_seq_id
              Nb1z1   Nb1     z       1
              Nb1x2   Nb1     x       2
              Nb1y2   Nb1     y       2
              S1x1    S1      x       1
              S1y1    S1      y       1
              S1z1    S1      z       1
              S1x2    S1      x       2
              S1y2    S1      y       2
              S1z2    S1      z       2

     loop_
         _atom_site_displace_Fourier_param_id
         _atom_site_displace_Fourier_param_cos
         _atom_site_displace_Fourier_param_sin
              Nb1z1  -0.0006(2)      0.
              Nb1x2   0.             0.0078(17)
              Nb1y2  -0.0014(7)      0.
              S1x1    0.            -0.0134(85)
              S1y1   -0.0022(12)     0.
              S1z1    0.0014(14)     0.
              S1x2    0.            -0.0129(27)
              S1y2   -0.0073(27)     0.
              S1z2   -0.0012(3)      0.

#### End of modulated structure first subsystem data ######

# Items concerning the modulated structure of the second
# subsystem

data_LaSNbS2_MOD_LaS

     _audit_block_code          1997-07-24|LaSNbS2|G.M.|_MOD_LaS

     loop_
         _audit_link_block_code
         _audit_link_block_description
1997-07-24|LaSNbS2|G.M.|
                      'common experimental and publication data'
1997-07-24|LaSNbS2|G.M.|_REFRNCE
                             'reference structure (common data)'
1997-07-21|LaSNbS2|G.M.|_MOD
                             'modulated structure (common data)'
1997-07-24|LaSNbS2|G.M.|_REFRNCE_NbS2
                           'reference structure (1st subsystem)'
1997-07-21|LaSNbS2|G.M.|_MOD_NbS2
                           'modulated structure (1st subsystem)'
1997-07-24|LaSNbS2|G.M.|_REFRNCE_LaS
                           'reference structure (2nd subsystem)'
.                          'modulated structure (2nd subsystem)'

     loop_
         _atom_site_Fourier_wave_vector_seq_id
         _atom_site_Fourier_wave_vector_x
         _atom_site_Fourier_wave_vector_z
         _atom_site_Fourier_wave_vector_description
              1      1.761   0.5   'First harmonic'
              2      3.522   1.0   'Second harmonic'

     loop_
         _atom_site_displace_Fourier_id
         _atom_site_displace_Fourier_atom_site_label
         _atom_site_displace_Fourier_axis
         _atom_site_displace_Fourier_wave_vector_seq_id
              La1x1   La1     x       1
              La1y1   La1     y       1
              La1z1   La1     z       1
              La1x2   La1     x       2
              La1y2   La1     y       2
              La1z2   La1     z       2
              S2x1    S2      x       1
              S2y1    S2      y       1
              S2z1    S2      z       1
              S2x2    S2      x       2
              S2y2    S2      y       2
              S2z2    S2      z       2

     loop_
         _atom_site_displace_Fourier_param_id
         _atom_site_displace_Fourier_param_cos
         _atom_site_displace_Fourier_param_sin
              La1x1   0.            -0.0010(22)
              La1y1   0.0174(4)      0.
              La1z1  -0.0005(3)      0.
              La1x2   0.             0.0144(7)
              La1y2   0.0001(14)     0.
              La1z2   0.0008(3)      0.
              S2x1    0.             0.0059(70)
              S2y1    0.0081(16)     0.
              S2z1    0.0009(12)     0.
              S2x2    0.            -0.0030(30)
              S2y2    0.0002(56)     0.
              S2z2    0.0007(10)     0.

### End of modulated structure second subsystem data ######
;
;
    Example 3 - based on the modulated structure of inorganic misfit layer
    (LaS)~1.14~NbS~2~ [Smaalen, S. van (1991). J. Phys. Condens.
    Matter, 3, 1247-1263].
;
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
;
     _atom_sites_displace_Fourier_axes_description
     ;   a1 and a2 are respectively the long molecular axis
         and the axis normal to the mean molecular plane.
     ;

     loop_
         _atom_site_displace_Fourier_id
         _atom_site_displace_Fourier_atom_site_label
         _atom_site_displace_Fourier_axis
         _atom_site_displace_Fourier_wave_vector_seq_id
              Byphenyl_a1_1    Biphenyl  a1    1

     loop_
         _atom_site_displace_Fourier_param_id
         _atom_site_displace_Fourier_param_modulus
         _atom_site_displace_Fourier_param_phase
              Byphenyl_a1_1    0.035(5)       0.
;
;
    Example 4 - extracted from Baudour & Sanquer [Acta Cryst. (1983), B39,
                75-84]. Note the entry from the ATOM_SITES_DISPLACE_FOURIER
                category to describe collective information relating to all
                the atom sites.
;
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    _definition
;              Data items in the ATOM_SITE_DISPLACE_FOURIER_PARAM category
               record details about the coefficients of the Fourier series
               used to describe the displacive modulation of an atom or rigid
               group. In the case of rigid groups, items in this category would
               only include the translational part of the modulation. The
               rotational part would appear in a separate list of items
               belonging to the ATOM_SITE_ROT_FOURIER_PARAM category. The
               Fourier components are defined in the category
               ATOM_SITE_DISPLACE_FOURIER and are listed separately.
;

_atom_site_displace_Fourier_param_cos
CIF
The displacive distortion of a given atom or rigid group (see
also _atom_site_rot_Fourier_param_cos) is usually parameterized
by Fourier series. Each term of the series commonly adopts two
different representations: the sine-cosine form,
         Ac cos(2 k r)+As sin(2 k r),
and the modulus-argument form,
         |A| cos(2 k r+),
where k is the wave vector of the term and r is the atomic
average position. _atom_site_displace_Fourier_param_cos is the
cosine coefficient (Ac) corresponding to the Fourier term defined
by _atom_site_displace_Fourier_atom_site_label,
_atom_site_displace_Fourier_axis and
_atom_site_displace_Fourier_wave_vector_seq_id. Atomic or rigid-
group displacements must be expressed as fractions of the unit
cell or in angstroms if the modulations are referred to some
special axes defined by
_atom_sites_displace_Fourier_axes_description.
data_atom_site_displace_Fourier_param_cos
    _name                       '_atom_site_displace_Fourier_param_cos'
    _category                   atom_site_displace_Fourier_param
    _type                       numb
    _type_conditions            esd
    _list                       yes
    _list_reference             '_atom_site_displace_Fourier_param_id'
    _enumeration_default        0.0
    _definition
;              The displacive distortion of a given atom or rigid group (see
               also _atom_site_rot_Fourier_param_cos) is usually parameterized
               by Fourier series. Each term of the series commonly adopts two
               different representations: the sine-cosine form,
                        Ac cos(2\p k r)+As sin(2\p k r),
               and the modulus-argument form,
                        |A| cos(2\p k r+\f),
               where k is the wave vector of the term and r is the atomic
               average position. _atom_site_displace_Fourier_param_cos is the
               cosine coefficient (Ac) corresponding to the Fourier term defined
               by _atom_site_displace_Fourier_atom_site_label,
               _atom_site_displace_Fourier_axis and
               _atom_site_displace_Fourier_wave_vector_seq_id. Atomic or rigid-
               group displacements must be expressed as fractions of the unit
               cell or in angstroms if the modulations are referred to some
               special axes defined by
               _atom_sites_displace_Fourier_axes_description.
;

_atom_site_displace_Fourier_param_id
CIF
A code identifying the (in general complex) coefficient of each
term present in the Fourier series describing the displacive
modulation of a given atom or rigid group. In the case of a rigid
group, it applies only to the translational part of the
distortion. This code must match _atom_site_displace_Fourier_id.
data_atom_site_displace_Fourier_param_id
    _name                        '_atom_site_displace_Fourier_param_id'
    _category                    atom_site_displace_Fourier_param
    _type                        char
    _list                        yes
    _list_mandatory              yes
    _list_link_parent            '_atom_site_displace_Fourier_id'
    _definition
;              A code identifying the (in general complex) coefficient of each
               term present in the Fourier series describing the displacive
               modulation of a given atom or rigid group. In the case of a rigid
               group, it applies only to the translational part of the
               distortion. This code must match _atom_site_displace_Fourier_id.
;

_atom_site_displace_Fourier_param_modulus
CIF
The displacive distortion of a given atom or rigid group (see
also _atom_site_rot_Fourier_param_modulus) is usually
parameterized by Fourier series. Each term of the series commonly
adopts two different representations: the sine-cosine form,
         Ac cos(2 k r)+As sin(2 k r),
and the modulus-argument form,
         |A| cos(2 k r+),
where k is the wave vector of the term and r is the atomic
average position. _atom_site_displace_Fourier_param_modulus is
the modulus (|A|) of the complex amplitude corresponding to the
Fourier term defined by
_atom_site_displace_Fourier_atom_site_label,
_atom_site_displace_Fourier_axis and
_atom_site_displace_Fourier_wave_vector_seq_id. Atomic or rigid-
group displacements must be expressed as fractions of the unit
cell or in angstroms if the modulations are referred to some
special axes defined by
_atom_sites_displace_Fourier_axes_description.
data_atom_site_displace_Fourier_param_modulus
    _name                       '_atom_site_displace_Fourier_param_modulus'
    _category                   atom_site_displace_Fourier_param
    _type                       numb
    _type_conditions            esd
    _list                       yes
    _list_reference             '_atom_site_displace_Fourier_param_id'
    _enumeration_range          0.0:
    _enumeration_default        0.0
    _definition
;              The displacive distortion of a given atom or rigid group (see
               also _atom_site_rot_Fourier_param_modulus) is usually
               parameterized by Fourier series. Each term of the series commonly
               adopts two different representations: the sine-cosine form,
                        Ac cos(2\p k r)+As sin(2\p k r),
               and the modulus-argument form,
                        |A| cos(2\p k r+\f),
               where k is the wave vector of the term and r is the atomic
               average position. _atom_site_displace_Fourier_param_modulus is
               the modulus (|A|) of the complex amplitude corresponding to the
               Fourier term defined by
               _atom_site_displace_Fourier_atom_site_label,
               _atom_site_displace_Fourier_axis and
               _atom_site_displace_Fourier_wave_vector_seq_id. Atomic or rigid-
               group displacements must be expressed as fractions of the unit
               cell or in angstroms if the modulations are referred to some
               special axes defined by
               _atom_sites_displace_Fourier_axes_description.
;

_atom_site_displace_Fourier_param_phase
CIF
The displacive distortion of a given atom or rigid group (see
also _atom_site_rot_Fourier_param_phase) is usually parameterized
by Fourier series. Each term of the series commonly adopts two
different representations: the sine-cosine form,
         Ac cos(2 k r)+As sin(2 k r),
and the modulus-argument form,
         |A| cos(2 k r+),
where k is the wave vector of the term and r is the atomic
average position. _atom_site_displace_Fourier_param_phase is the
phase (/2) in cycles of the complex amplitude corresponding
to the Fourier term defined by
_atom_site_displace_Fourier_atom_site_label,
_atom_site_displace_Fourier_axis and
_atom_site_displace_Fourier_wave_vector_seq_id.
data_atom_site_displace_Fourier_param_phase
    _name                       '_atom_site_displace_Fourier_param_phase'
    _category                   atom_site_displace_Fourier_param
    _type                       numb
    _type_conditions            esd
    _list                       yes
    _list_reference             '_atom_site_displace_Fourier_param_id'
    _enumeration_range          -1.0:1.0
    _enumeration_default        0.0
    _units                      cy
    _units_detail               'Cycles'
    _definition
;              The displacive distortion of a given atom or rigid group (see
               also _atom_site_rot_Fourier_param_phase) is usually parameterized
               by Fourier series. Each term of the series commonly adopts two
               different representations: the sine-cosine form,
                        Ac cos(2\p k r)+As sin(2\p k r),
               and the modulus-argument form,
                        |A| cos(2\p k r+\f),
               where k is the wave vector of the term and r is the atomic
               average position. _atom_site_displace_Fourier_param_phase is the
               phase (\f/2\p) in cycles of the complex amplitude corresponding
               to the Fourier term defined by
               _atom_site_displace_Fourier_atom_site_label,
               _atom_site_displace_Fourier_axis and
               _atom_site_displace_Fourier_wave_vector_seq_id.
;

_atom_site_displace_Fourier_param_sin
CIF
The displacive distortion of a given atom or rigid group (see
also _atom_site_rot_Fourier_param_sin) is usually parameterized
by Fourier series. Each term of the series commonly adopts two
different representations: the sine-cosine form,
         Ac cos(2 k r)+As sin(2 k r),
and the modulus-argument form,
         |A| cos(2 k r+),
where k is the wave vector of the term and r is the atomic
average position. _atom_site_displace_Fourier_param_sin is the
sine coefficient (As) corresponding to the Fourier term defined
by _atom_site_displace_Fourier_atom_site_label,
_atom_site_displace_Fourier_axis, and
_atom_site_displace_Fourier_wave_vector_seq_id. Atomic or rigid-
group displacements must be expressed as fractions of the unit
cell or in angstroms if the modulations are referred to some
special axes defined by
_atom_sites_displace_Fourier_axes_description.
data_atom_site_displace_Fourier_param_sin
    _name                       '_atom_site_displace_Fourier_param_sin'
    _category                   atom_site_displace_Fourier_param
    _type                       numb
    _type_conditions            esd
    _list                       yes
    _list_reference             '_atom_site_displace_Fourier_param_id'
    _enumeration_default        0.0
    _definition
;              The displacive distortion of a given atom or rigid group (see
               also _atom_site_rot_Fourier_param_sin) is usually parameterized
               by Fourier series. Each term of the series commonly adopts two
               different representations: the sine-cosine form,
                        Ac cos(2\p k r)+As sin(2\p k r),
               and the modulus-argument form,
                        |A| cos(2\p k r+\f),
               where k is the wave vector of the term and r is the atomic
               average position. _atom_site_displace_Fourier_param_sin is the
               sine coefficient (As) corresponding to the Fourier term defined
               by _atom_site_displace_Fourier_atom_site_label,
               _atom_site_displace_Fourier_axis, and
               _atom_site_displace_Fourier_wave_vector_seq_id. Atomic or rigid-
               group displacements must be expressed as fractions of the unit
               cell or in angstroms if the modulations are referred to some
               special axes defined by
               _atom_sites_displace_Fourier_axes_description.
;

###################################
## ATOM_SITE_FOURIER_WAVE_VECTOR ##
###################################

_ATOM_SITE_DISPLACE_SPECIAL_FUNC_[]
CIF
Data items in the ATOM_SITE_DISPLACE_SPECIAL_FUNC category record
details about the displacive modulation of an atom site in a
modulated structure when it is not described by Fourier series.
Special functions are effective in some cases where the
modulations are highly anharmonic, since the number of parameters
is drastically reduced. However, they are in general
discontinuous or with discontinuous derivatives and therefore
these functions describe an ideal situation that never occurs
in a real modulated crystal. Up to now, only a few types of
special functions have been used and all of them come from the
JANA suite of programs. Although this approach is far from
being general, it has the advantage that the functions are
tightly defined and therefore the atomic displacements and
occupations can be calculated easily. In this dictionary,
only the special functions available in JANA2000 have been
included. These are:
  (1) Sawtooth functions for atomic displacive modulation along
      x, y and z.
  (2) Crenel functions for the occupational modulation of atoms
      and rigid groups. Both of these only apply to
      one-dimensional modulated structures.
Example:
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#   In this example the displacive modulation of the O(4)
#   atom was modelled using a sawtooth-shaped function.
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     loop_
         _atom_site_displace_special_func_atom_site_label
         _atom_site_displace_special_func_sawtooth_ax
         _atom_site_displace_special_func_sawtooth_ay
         _atom_site_displace_special_func_sawtooth_az
         _atom_site_displace_special_func_sawtooth_c
         _atom_site_displace_special_func_sawtooth_w
           O(4)  -0.270(6)  0.022(9)  0.014(2)  0.42(2)  1.07(2)
data_atom_site_displace_special_func_[]
    _name                        '_atom_site_displace_special_func_[]'
    _category                    category_overview
    _type                        null
    loop_ _example
          _example_detail
;
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#   In this example the displacive modulation of the O(4)
#   atom was modelled using a sawtooth-shaped function.
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     loop_
         _atom_site_displace_special_func_atom_site_label
         _atom_site_displace_special_func_sawtooth_ax
         _atom_site_displace_special_func_sawtooth_ay
         _atom_site_displace_special_func_sawtooth_az
         _atom_site_displace_special_func_sawtooth_c
         _atom_site_displace_special_func_sawtooth_w
           O(4)  -0.270(6)  0.022(9)  0.014(2)  0.42(2)  1.07(2)
;
;
    Example 1 - extracted from Gao, Coppens, Cox & Moodenbaugh [Acta
                Cryst. (1993), A49, 141-148].
;
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
      _definition
;              Data items in the ATOM_SITE_DISPLACE_SPECIAL_FUNC category record
               details about the displacive modulation of an atom site in a
               modulated structure when it is not described by Fourier series.
               Special functions are effective in some cases where the
               modulations are highly anharmonic, since the number of parameters
               is drastically reduced. However, they are in general
               discontinuous or with discontinuous derivatives and therefore
               these functions describe an ideal situation that never occurs
               in a real modulated crystal. Up to now, only a few types of
               special functions have been used and all of them come from the
               JANA suite of programs. Although this approach is far from
               being general, it has the advantage that the functions are
               tightly defined and therefore the atomic displacements and
               occupations can be calculated easily. In this dictionary,
               only the special functions available in JANA2000 have been
               included. These are:


                 (1) Sawtooth functions for atomic displacive modulation along
                     x, y and z.
                 (2) Crenel functions for the occupational modulation of atoms
                     and rigid groups. Both of these only apply to
                     one-dimensional modulated structures.
;

_atom_site_displace_special_func_atom_site_label
CIF
The code that identifies an atom in a loop in which the special
function that describes its displacive modulation is being
defined. This code must match the _atom_site_label of the
associated coordinate list and conform to the rules described in
_atom_site_label.
data_atom_site_displace_special_func_atom_site_label
    _name                     '_atom_site_displace_special_func_atom_site_label'
    _category                 atom_site_displace_special_func
    _type                     char
    _list                     yes
    _list_mandatory           yes
    _list_link_parent         '_atom_site_label'

    _definition
;              The code that identifies an atom in a loop in which the special
               function that describes its displacive modulation is being
               defined. This code must match the _atom_site_label of the
               associated coordinate list and conform to the rules described in
               _atom_site_label.
;

_atom_site_displace_special_func_sawtooth
CIF
Data names:
_atom_site_displace_special_func_sawtooth_ax
_atom_site_displace_special_func_sawtooth_ay
_atom_site_displace_special_func_sawtooth_az
_atom_site_displace_special_func_sawtooth_c
_atom_site_displace_special_func_sawtooth_w
_atom_site_displace_special_func_sawtooth_ items are the
adjustable parameters of a sawtooth function.
A displacive sawtooth function along the internal space is
defined as follows:
                  ux=2*ax[(x4-c)/w]
                  uy=2*ay[(x4-c)/w]
                  uz=2*az[(x4-c)/w]
for x4 belonging to the interval [c-(w/2), c+(w/2)], where ax,
ay and az are the amplitudes (maximum displacements)
along each crystallographic axis, w is its width, x4 is the
internal coordinate and c is the centre of the function in
internal space. ux, uy and uz must be expressed in relative
units. The use of this function is restricted to
one-dimensional modulated structures. For more details, see
the manual for JANA2000 (Petricek & Dusek, 2000).
Reference: Petricek, V. & Dusek, M. (2000). JANA2000. The
crystallographic computing system. Institute of Physics, Prague,
Czech Republic.
data_atom_site_displace_special_func_sawtooth_
    loop_ _name               '_atom_site_displace_special_func_sawtooth_ax'
                              '_atom_site_displace_special_func_sawtooth_ay'
                              '_atom_site_displace_special_func_sawtooth_az'
                              '_atom_site_displace_special_func_sawtooth_c'
                              '_atom_site_displace_special_func_sawtooth_w'
    _category                 atom_site_displace_special_func
    _type                     numb
    _type_conditions          esd
    _list                     yes
    _list_reference           '_atom_site_displace_special_func_atom_site_label'
    _enumeration_default      0.0
    _definition
;               _atom_site_displace_special_func_sawtooth_ items are the
                adjustable parameters of a sawtooth function.

                A displacive sawtooth function along the internal space is
                defined as follows:

                                  ux=2*ax[(x4-c)/w]
                                  uy=2*ay[(x4-c)/w]
                                  uz=2*az[(x4-c)/w]

                for x4 belonging to the interval [c-(w/2), c+(w/2)], where ax,
                ay and az are the amplitudes (maximum displacements)
                along each crystallographic axis, w is its width, x4 is the
                internal coordinate and c is the centre of the function in
                internal space. ux, uy and uz must be expressed in relative
                units. The use of this function is restricted to
                one-dimensional modulated structures. For more details, see
                the manual for JANA2000 (Petricek & Dusek, 2000).

                Reference: Petricek, V. & Dusek, M. (2000). JANA2000. The
                crystallographic computing system. Institute of Physics, Prague,
                Czech Republic.

;

################################
## ATOM_SITE_OCC_SPECIAL_FUNC ##
################################

_ATOM_SITE_OCC_FOURIER_[]
CIF
Data items in the ATOM_SITE_OCC_FOURIER category record details
about the Fourier components of the occupational modulation of
the atom sites in a modulated structure. The (in general complex)
coefficients of each Fourier component belong to the category
ATOM_SITE_OCC_FOURIER_PARAM and are listed separately.
Example:
loop_
         _atom_site_occ_Fourier_id
         _atom_site_occ_Fourier_atom_site_label
         _atom_site_occ_Fourier_wave_vector_seq_id
              CuBr4_1  CuBr4   1
              NC4_1_1  (NC4)1  1
              NC4_2_1  (NC4)2  1
data_atom_site_occ_Fourier_[]
    _name                        '_atom_site_occ_Fourier_[]'
    _category                    category_overview
    _type                        null
    loop_ _example
          _example_detail
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
;
     loop_
         _atom_site_occ_Fourier_id
         _atom_site_occ_Fourier_atom_site_label
         _atom_site_occ_Fourier_wave_vector_seq_id
              CuBr4_1  CuBr4   1
              NC4_1_1  (NC4)1  1
              NC4_2_1  (NC4)2  1
;
;
    Example 1 - extracted from Madariaga, G., Z\'u\~niga, F.J., Paciorek, W.A.
                & Bocanegra, E.H. [Acta Cryst. (1990), B46, 620-628].
;
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
      _definition
;              Data items in the ATOM_SITE_OCC_FOURIER category record details
               about the Fourier components of the occupational modulation of
               the atom sites in a modulated structure. The (in general complex)
               coefficients of each Fourier component belong to the category
               ATOM_SITE_OCC_FOURIER_PARAM and are listed separately.
;

_atom_site_occ_Fourier_atom_site_label
CIF
Modulation parameters are usually looped in separate lists.
Modulated parameters are the atom positions (displacive
modulation), the atomic occupation (occupational modulation)
and/or the atomic anisotropic (or isotropic) displacement
parameters (referred to as modulation of thermal parameters,
since the term 'displacement parameters' is ambiguous in this
context). _atom_site_occ_Fourier_atom_site_label is the code that
identifies an atom in a loop in which the Fourier components of
its occupational modulation are listed. This code must
match the _atom_site_label of the associated coordinate list and
conform to the rules described in _atom_site_label.
data_atom_site_occ_Fourier_atom_site_label
    _name                        '_atom_site_occ_Fourier_atom_site_label'
    _category                    atom_site_occ_Fourier
    _type                        char
    _list                        yes
    _list_link_parent            '_atom_site_label'

    _definition
;              Modulation parameters are usually looped in separate lists.
               Modulated parameters are the atom positions (displacive
               modulation), the atomic occupation (occupational modulation)
               and/or the atomic anisotropic (or isotropic) displacement
               parameters (referred to as modulation of thermal parameters,
               since the term 'displacement parameters' is ambiguous in this
               context). _atom_site_occ_Fourier_atom_site_label is the code that
               identifies an atom in a loop in which the Fourier components of
               its occupational modulation are listed. This code must
               match the _atom_site_label of the associated coordinate list and
               conform to the rules described in _atom_site_label.
;

_atom_site_occ_Fourier_id
CIF
A code identifying each component of the occupational modulation
of a given atom or rigid group when the modulation is
expressed in terms of Fourier series.
data_atom_site_occ_Fourier_id
    _name                        '_atom_site_occ_Fourier_id'
    _category                    atom_site_occ_Fourier
    _type                        char
    _list                        yes
    _list_mandatory              yes
    _list_link_child             '_atom_site_occ_Fourier_param_id'
    _definition
;              A code identifying each component of the occupational modulation
               of a given atom or rigid group when the modulation is
               expressed in terms of Fourier series.
;

_atom_site_occ_Fourier_wave_vector_seq_id
CIF
A numeric code identifying the wave vectors of the Fourier terms
used in the structural model to describe the modulation functions
corresponding to the occupational part of the distortion. This
code must match _atom_site_Fourier_wave_vector_seq_id.
data_atom_site_occ_Fourier_wave_vector_seq_id
    _name                        '_atom_site_occ_Fourier_wave_vector_seq_id'
    _category                    atom_site_occ_Fourier
    _type                        numb
    _list                        yes
    _list_reference              '_atom_site_occ_Fourier_id'
    _list_link_parent            '_atom_site_Fourier_wave_vector_seq_id'
    _definition
;              A numeric code identifying the wave vectors of the Fourier terms
               used in the structural model to describe the modulation functions
               corresponding to the occupational part of the distortion. This
               code must match _atom_site_Fourier_wave_vector_seq_id.
;

#################################
## ATOM_SITE_OCC_FOURIER_PARAM ##
#################################

_ATOM_SITE_OCC_FOURIER_PARAM_[]
CIF
Data items in the ATOM_SITE_OCC_FOURIER_PARAM category record
details about the coefficients of the Fourier series used to
describe the occupational modulation of the atom sites in a
modulated structure. The Fourier components are defined in the
category ATOM_SITE_OCC_FOURIER and are listed separately.
Example:
loop_
         _atom_site_occ_Fourier_param_id
         _atom_site_occ_Fourier_param_modulus
         _atom_site_occ_Fourier_param_phase
              CuBr4_1  0.397(11)    0.392(6)
              NC4_1_1  0.216(42)   -0.047(33)
              NC4_2_1  0.208(48)    0.132(27)
data_atom_site_occ_Fourier_param_[]
    _name                        '_atom_site_occ_Fourier_param_[]'
    _category                    category_overview
    _type                        null
    loop_ _example
          _example_detail
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
;
     loop_
         _atom_site_occ_Fourier_param_id
         _atom_site_occ_Fourier_param_modulus
         _atom_site_occ_Fourier_param_phase
              CuBr4_1  0.397(11)    0.392(6)
              NC4_1_1  0.216(42)   -0.047(33)
              NC4_2_1  0.208(48)    0.132(27)
;
;
    Example 1 - extracted from Madariaga, G., Z\'u\~niga, F.J., Paciorek, W.A.
                & Bocanegra, E.H. [Acta Cryst. (1990), B46, 620-628].
;
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
      _definition
;              Data items in the ATOM_SITE_OCC_FOURIER_PARAM category record
               details about the coefficients of the Fourier series used to
               describe the occupational modulation of the atom sites in a
               modulated structure. The Fourier components are defined in the
               category ATOM_SITE_OCC_FOURIER and are listed separately.
;

_atom_site_occ_Fourier_param_cos
CIF
The occupational distortion of a given atom or rigid group is
usually parameterized by Fourier series. Each term of the series
commonly adopts two different representations: the sine-cosine
form,
         Pc cos(2 k r)+Ps sin(2 k r),
and the modulus-argument form,
         |P| cos(2 k r+),
where k is the wave vector of the term and r is the atomic
average position. _atom_site_occ_Fourier_param_cos is the cosine
coefficient (Pc) corresponding to the Fourier term defined by
_atom_site_occ_Fourier_atom_site_label and
_atom_site_occ_Fourier_wave_vector_seq_id.
data_atom_site_occ_Fourier_param_cos
    _name                        '_atom_site_occ_Fourier_param_cos'
    _category                    atom_site_occ_Fourier_param
    _type                        numb
    _type_conditions             esd
    _list                        yes
    _list_reference              '_atom_site_occ_Fourier_param_id'
    _enumeration_default         0.0
    _definition
;              The occupational distortion of a given atom or rigid group is
               usually parameterized by Fourier series. Each term of the series
               commonly adopts two different representations: the sine-cosine
               form,
                        Pc cos(2\p k r)+Ps sin(2\p k r),
               and the modulus-argument form,
                        |P| cos(2\p k r+\d),
               where k is the wave vector of the term and r is the atomic
               average position. _atom_site_occ_Fourier_param_cos is the cosine
               coefficient (Pc) corresponding to the Fourier term defined by
               _atom_site_occ_Fourier_atom_site_label and
               _atom_site_occ_Fourier_wave_vector_seq_id.
;

_atom_site_occ_Fourier_param_id
CIF
A code identifying the (in general complex) coefficient of each
term present in the Fourier series describing the occupational
modulation of a given atom or rigid group. This code must match
_atom_site_occ_Fourier_id.
data_atom_site_occ_Fourier_param_id
    _name                        '_atom_site_occ_Fourier_param_id'
    _category                    atom_site_occ_Fourier_param
    _type                        char
    _list                        yes
    _list_mandatory              yes
    _list_link_parent            '_atom_site_occ_Fourier_id'
    _definition
;              A code identifying the (in general complex) coefficient of each
               term present in the Fourier series describing the occupational
               modulation of a given atom or rigid group. This code must match
               _atom_site_occ_Fourier_id.
;

_atom_site_occ_Fourier_param_modulus
CIF
The occupational distortion of a given atom or rigid group is
usually parameterized by Fourier series. Each term of the series
commonly adopts two different representations: the sine-cosine
form,
         Pc cos(2 k r)+Ps sin(2 k r),
and the modulus-argument form,
         |P| cos(2 k r+),
where k is the wave vector of the term and r is the atomic
average position. _atom_site_occ_Fourier_param_modulus is the
modulus (|P|) of the complex amplitude corresponding to the
Fourier term defined by _atom_site_occ_Fourier_atom_site_label
and _atom_site_occ_Fourier_wave_vector_seq_id.
data_atom_site_occ_Fourier_param_modulus
    _name                        '_atom_site_occ_Fourier_param_modulus'
    _category                    atom_site_occ_Fourier_param
    _type                        numb
    _type_conditions             esd
    _list                        yes
    _list_reference              '_atom_site_occ_Fourier_param_id'
    _enumeration_range           0.0:
    _enumeration_default         0.0
    _definition
;              The occupational distortion of a given atom or rigid group is
               usually parameterized by Fourier series. Each term of the series
               commonly adopts two different representations: the sine-cosine
               form,
                        Pc cos(2\p k r)+Ps sin(2\p k r),
               and the modulus-argument form,
                        |P| cos(2\p k r+\d),
               where k is the wave vector of the term and r is the atomic
               average position. _atom_site_occ_Fourier_param_modulus is the
               modulus (|P|) of the complex amplitude corresponding to the
               Fourier term defined by _atom_site_occ_Fourier_atom_site_label
               and _atom_site_occ_Fourier_wave_vector_seq_id.
;

_atom_site_occ_Fourier_param_phase
CIF
The occupational distortion of a given atom or rigid group is
usually parameterized by Fourier series. Each term of the series
commonly adopts two different representations: the sine-cosine
form,
         Pc cos(2 k r)+Ps sin(2 k r),
and the modulus-argument form,
         |P| cos(2 k r+),
where k is the wave vector of the term and r is the atomic
average position. _atom_site_occ_Fourier_param_phase is the phase
(/2) in cycles corresponding to the Fourier term defined by
_atom_site_occ_Fourier_atom_site_label and
_atom_site_occ_Fourier_wave_vector_seq_id.
data_atom_site_occ_Fourier_param_phase
    _name                        '_atom_site_occ_Fourier_param_phase'
    _category                    atom_site_occ_Fourier_param
    _type                        numb
    _type_conditions             esd
    _list                        yes
    _list_reference              '_atom_site_occ_Fourier_param_id'
    _enumeration_range          -1.0:1.0
    _enumeration_default         0.0
    _units                       cy
    _units_detail                'Cycles'
    _definition
;              The occupational distortion of a given atom or rigid group is
               usually parameterized by Fourier series. Each term of the series
               commonly adopts two different representations: the sine-cosine
               form,
                        Pc cos(2\p k r)+Ps sin(2\p k r),
               and the modulus-argument form,
                        |P| cos(2\p k r+\d),
               where k is the wave vector of the term and r is the atomic
               average position. _atom_site_occ_Fourier_param_phase is the phase
               (\d/2\p) in cycles corresponding to the Fourier term defined by
               _atom_site_occ_Fourier_atom_site_label and
               _atom_site_occ_Fourier_wave_vector_seq_id.
;

_atom_site_occ_Fourier_param_sin
CIF
The occupational distortion of a given atom or rigid group is
usually parameterized by Fourier series. Each term of the series
commonly adopts two different representations: the sine-cosine
form,
         Pc cos(2 k r)+Ps sin(2 k r),
and the modulus-argument form,
         |P| cos(2 k r+),
where k is the wave vector of the term and r is the atomic
average position. _atom_site_occ_Fourier_param_sin is the sine
coefficient (Ps) corresponding to the Fourier term defined by
_atom_site_occ_Fourier_atom_site_label and
_atom_site_occ_Fourier_wave_vector_seq_id.
data_atom_site_occ_Fourier_param_sin
    _name                        '_atom_site_occ_Fourier_param_sin'
    _category                    atom_site_occ_Fourier_param
    _type                        numb
    _type_conditions             esd
    _list                        yes
    _list_reference              '_atom_site_occ_Fourier_param_id'
    _enumeration_default         0.0
    _definition
;              The occupational distortion of a given atom or rigid group is
               usually parameterized by Fourier series. Each term of the series
               commonly adopts two different representations: the sine-cosine
               form,
                        Pc cos(2\p k r)+Ps sin(2\p k r),
               and the modulus-argument form,
                        |P| cos(2\p k r+\d),
               where k is the wave vector of the term and r is the atomic
               average position. _atom_site_occ_Fourier_param_sin is the sine
               coefficient (Ps) corresponding to the Fourier term defined by
               _atom_site_occ_Fourier_atom_site_label and
               _atom_site_occ_Fourier_wave_vector_seq_id.
;

######################
## ATOM_SITE_PHASON ##
######################

_ATOM_SITE_OCC_SPECIAL_FUNC_[]
CIF
Data items in the ATOM_SITE_DISPLACE_OCC_SPECIAL_FUNC category
record details about the occupational modulation of a given atom
or rigid group in a modulated structure when it is not described
by Fourier series. Special functions are effective in some cases
where the modulations are highly anharmonic, since the number of
parameters is drastically reduced. However, they are in general
discontinuous or with discontinuous derivatives and therefore
these functions describe an ideal situation that never occurs in
a real modulated crystal. Up to now, only a few types of special
functions have been used and all of them come from the JANA suite
of programs.  Although this approach is far from being general,
it has the advantage that the functions are tightly defined and
therefore the atomic displacements and occupations can be
calculated easily. In this dictionary, only the special functions
available in JANA2000 have been included.
These are:
  (1) Sawtooth functions for atomic displacive modulation along
     x, y and z.
  (2) Crenel functions for the occupational modulation of atoms
     and rigid groups. Both of these only apply to
     one-dimensional modulated structures.
Example:
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#   In this example the occupational modulation of the Mn(2)
#   atom was modelled using a square-wave crenel function.
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     loop_
         _atom_site_occ_special_func_atom_site_label
         _atom_site_occ_special_func_crenel_c
         _atom_site_occ_special_func_crenel_w
             Mn(2)    0.25    0.623(4)
data_atom_site_occ_special_func_[]
    _name                        '_atom_site_occ_special_func_[]'
    _category                    category_overview
    _type                        null
    loop_ _example
          _example_detail
;
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#   In this example the occupational modulation of the Mn(2)
#   atom was modelled using a square-wave crenel function.
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     loop_
         _atom_site_occ_special_func_atom_site_label
         _atom_site_occ_special_func_crenel_c
         _atom_site_occ_special_func_crenel_w
             Mn(2)    0.25    0.623(4)
;
;
    Example 1 - extracted from Elding-Pont\'en, M., Stenberg, L.,  Lidin, S.,
                Madariaga, G. & P\'erez-Mato, J.M. [Acta Cryst. (1997), B53,
                364-372].
;
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
      _definition
;              Data items in the ATOM_SITE_DISPLACE_OCC_SPECIAL_FUNC category
               record details about the occupational modulation of a given atom
               or rigid group in a modulated structure when it is not described
               by Fourier series. Special functions are effective in some cases
               where the modulations are highly anharmonic, since the number of
               parameters is drastically reduced. However, they are in general
               discontinuous or with discontinuous derivatives and therefore
               these functions describe an ideal situation that never occurs in
               a real modulated crystal. Up to now, only a few types of special
               functions have been used and all of them come from the JANA suite
               of programs.  Although this approach is far from being general,
               it has the advantage that the functions are tightly defined and
               therefore the atomic displacements and occupations can be
               calculated easily. In this dictionary, only the special functions
               available in JANA2000 have been included.
               These are:

                 (1) Sawtooth functions for atomic displacive modulation along
                    x, y and z.
                 (2) Crenel functions for the occupational modulation of atoms
                    and rigid groups. Both of these only apply to
                    one-dimensional modulated structures.
;

_atom_site_occ_special_func_atom_site_label
CIF
The code that identifies an atom or rigid group in a loop in
which the parameters of the special function that describes its
occupational modulation are listed. This code must match
the _atom_site_label of the associated coordinate list and
conform to the rules described in _atom_site_label.
data_atom_site_occ_special_func_atom_site_label
    _name                        '_atom_site_occ_special_func_atom_site_label'
    _category                    atom_site_occ_special_func
    _type                        char
    _list                        yes
    _list_mandatory              yes
    _list_link_parent            '_atom_site_label'

    _definition
;              The code that identifies an atom or rigid group in a loop in
               which the parameters of the special function that describes its
               occupational modulation are listed. This code must match
               the _atom_site_label of the associated coordinate list and
               conform to the rules described in _atom_site_label.
;

_atom_site_occ_special_func_crenel
CIF
Data names:
_atom_site_occ_special_func_crenel_c
_atom_site_occ_special_func_crenel_w
_atom_site_occ_special_func_crenel_ items are the adjustable
parameters of a crenel function.
An occupational crenel function along the internal space is
defined as follows:
         p(x4)=1   if x4 belongs to the interval [c-w/2,c+w/2]
         p(x4)=0   if x4 is outside the interval [c-w/2,c+w/2],
where x4 is the internal coordinate, c is the centre of the
function in internal space and w is its width. The use of this
function is restricted to one-dimensional modulated structures.
For more details, see the manual for JANA2000
(Petricek & Dusek, 2000).
Reference: Petricek, V. & Dusek, M. (2000). JANA2000. The
crystallographic computing system. Institute of Physics, Prague,
Czech Republic.
data_atom_site_occ_special_func_crenel_
    loop_ _name                  '_atom_site_occ_special_func_crenel_c'
                                 '_atom_site_occ_special_func_crenel_w'
    _category                    atom_site_occ_special_func
    _type                        numb
    _type_conditions             esd
    _list                        yes
    _list_reference              '_atom_site_occ_special_func_atom_site_label'
    _enumeration_default         0.0
    _definition
;               _atom_site_occ_special_func_crenel_ items are the adjustable
                parameters of a crenel function.

                An occupational crenel function along the internal space is
                defined as follows:

                         p(x4)=1   if x4 belongs to the interval [c-w/2,c+w/2]
                         p(x4)=0   if x4 is outside the interval [c-w/2,c+w/2],

                where x4 is the internal coordinate, c is the centre of the
                function in internal space and w is its width. The use of this
                function is restricted to one-dimensional modulated structures.
                For more details, see the manual for JANA2000
                (Petricek & Dusek, 2000).

                Reference: Petricek, V. & Dusek, M. (2000). JANA2000. The
                crystallographic computing system. Institute of Physics, Prague,
                Czech Republic.
;

#################################
## ATOM_SITES_DISPLACE_FOURIER ##
#################################

_ATOM_SITE_PHASON_[]
CIF
Data items in the ATOM_SITE_PHASON category record details
about the atomic phason correction. Although this kind of
correction is intended to be overall, some refinement programs
(for example, JANA2000) allow for this (theoretically dubious)
atom-dependent phason treatment.
data_atom_site_phason_[]
    _name                        '_atom_site_phason_[]'
    _category                    category_overview
    _type                        null
#    loop_ _example
#          _example_detail
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#;
#       No example
#;
#;
#;
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
      _definition
;              Data items in the ATOM_SITE_PHASON category record details
               about the atomic phason correction. Although this kind of
               correction is intended to be overall, some refinement programs
               (for example, JANA2000) allow for this (theoretically dubious)
               atom-dependent phason treatment.
;

_atom_site_phason_atom_site_label
CIF
The code that identifies an atom or rigid group in a loop in
which the phason coefficients are listed. Although this kind of
correction is intended to be overall, some refinement programs
(for example, JANA2000) allow an independent phason correction
for each atom or rigid group. In this case,
_atom_site_phason_formula and _atom_site_phason_coeff should be
used (see also _refine_ls_mod_overall_phason_). This code must
match the _atom_site_label of the associated coordinate list and
conform to the rules described in _atom_site_label.
data_atom_site_phason_atom_site_label
    _name                        '_atom_site_phason_atom_site_label'
    _category                    atom_site_phason
    _type                        char
    _list                        yes
    _list_mandatory              yes
    _list_link_parent            '_atom_site_label'
    _definition
;              The code that identifies an atom or rigid group in a loop in
               which the phason coefficients are listed. Although this kind of
               correction is intended to be overall, some refinement programs
               (for example, JANA2000) allow an independent phason correction
               for each atom or rigid group. In this case,
               _atom_site_phason_formula and _atom_site_phason_coeff should be
               used (see also _refine_ls_mod_overall_phason_). This code must
               match the _atom_site_label of the associated coordinate list and
               conform to the rules described in _atom_site_label.
;

_atom_site_phason_coeff
CIF
The phason coefficient used to calculate (with the appropriate
expression given in _atom_site_phason_formula) the atomic phason
correction. Although this kind of correction is intended to be
overall, some refinement programs (for example, JANA2000) allow
an independent phason correction for each atom or rigid group. In
this case, _atom_site_phason_formula and _atom_site_phason_coeff
should be used (see also _refine_ls_mod_overall_phason_).
data_atom_site_phason_coeff
    _name                        '_atom_site_phason_coeff'
    _category                    atom_site_phason
    _type                        numb
    _type_conditions             esd
    _list                        yes
    _list_reference              '_atom_site_phason_atom_site_label'
    _enumeration_range           0.0:
    _enumeration_default         0.0
    _definition
;              The phason coefficient used to calculate (with the appropriate
               expression given in _atom_site_phason_formula) the atomic phason
               correction. Although this kind of correction is intended to be
               overall, some refinement programs (for example, JANA2000) allow
               an independent phason correction for each atom or rigid group. In
               this case, _atom_site_phason_formula and _atom_site_phason_coeff
               should be used (see also _refine_ls_mod_overall_phason_).
;

_atom_site_phason_formula
CIF
The formula used for the phason correction. Although both kinds
of corrections are intended to be overall, some refinement
programs (for example, JANA2000) allow an independent phason
correction for each atom or rigid group. In this case,
_atom_site_phason_formula and _atom_site_phason_coeff should
be used (see also _refine_ls_mod_overall_phason_).
data_atom_site_phason_formula
    _name                        '_atom_site_phason_formula'
    _category                    atom_site_phason
    _type                        char
    _list                        yes
    _list_reference              '_atom_site_phason_atom_site_label'
    loop_ _enumeration
          _enumeration_detail
               'Axe'     'Axe, J. D. (1980). Phys. Rev. B, 21, 4181-4190.'
               'Ovr'     'Overhauser, A. W. (1971). Phys. Rev. B, 3, 3173-3182.'
    _definition
;              The formula used for the phason correction. Although both kinds
               of corrections are intended to be overall, some refinement
               programs (for example, JANA2000) allow an independent phason
               correction for each atom or rigid group. In this case,
               _atom_site_phason_formula and _atom_site_phason_coeff should
               be used (see also _refine_ls_mod_overall_phason_).
;

###########################
## ATOM_SITE_ROT_FOURIER ##
###########################

_ATOM_SITE_ROT_FOURIER_[]
CIF
Data items in the ATOM_SITE_ROT_FOURIER category record details
about the Fourier components present in the rotational part of
the displacive modulation of a given rigid group. The
translational part would appear in a separate list of items
belonging to the ATOM_SITE_DISPLACE_FOURIER category. The (in
general complex) coefficients of each Fourier component belong
to the category ATOM_SITE_ROT_FOURIER_PARAM and are listed
separately.
Examples:
loop_
         _atom_site_rot_Fourier_id
         _atom_site_rot_Fourier_atom_site_label
         _atom_site_rot_Fourier_axis
         _atom_site_rot_Fourier_wave_vector_seq_id
              SeO4_x_1     SeO4    x       1
              SeO4_y_1     SeO4    y       1
_atom_sites_rot_Fourier_axes_description
     ;   a1 and a2 are respectively the long molecular axis
         and the axis normal to the mean molecular plane.
     ;
     loop_
         _atom_site_rot_Fourier_id
         _atom_site_rot_Fourier_atom_site_label
         _atom_site_rot_Fourier_axis
         _atom_site_rot_Fourier_wave_vector_seq_id
              Ph1_a1_1  Phenyl1   a1    1
              Ph2_a1_1  Phenyl2   a1    1
              Bph_a2_1  Biphenyl  a2    1
data_atom_site_rot_Fourier_[]
    _name                        '_atom_site_rot_Fourier_[]'
    _category                    category_overview
    _type                        null
    loop_ _example
          _example_detail
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
;
     loop_
         _atom_site_rot_Fourier_id
         _atom_site_rot_Fourier_atom_site_label
         _atom_site_rot_Fourier_axis
         _atom_site_rot_Fourier_wave_vector_seq_id
              SeO4_x_1     SeO4    x       1
              SeO4_y_1     SeO4    y       1
;
;
    Example 1 - example corresponding to the one-dimensional incommensurately
                modulated structure of K~2~SeO~4~.
;

;
     _atom_sites_rot_Fourier_axes_description
     ;   a1 and a2 are respectively the long molecular axis
         and the axis normal to the mean molecular plane.
     ;
     loop_
         _atom_site_rot_Fourier_id
         _atom_site_rot_Fourier_atom_site_label
         _atom_site_rot_Fourier_axis
         _atom_site_rot_Fourier_wave_vector_seq_id
              Ph1_a1_1  Phenyl1   a1    1
              Ph2_a1_1  Phenyl2   a1    1
              Bph_a2_1  Biphenyl  a2    1
;
;
    Example 2 - extracted from Baudour & Sanquer [Acta Cryst. (1983), B39,
                75-84]. Note the entry from the ATOM_SITES_ROT_FOURIER
                category to describe collective information relating to all
                the atom sites.
;
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    _definition
;              Data items in the ATOM_SITE_ROT_FOURIER category record details
               about the Fourier components present in the rotational part of
               the displacive modulation of a given rigid group. The
               translational part would appear in a separate list of items
               belonging to the ATOM_SITE_DISPLACE_FOURIER category. The (in
               general complex) coefficients of each Fourier component belong
               to the category ATOM_SITE_ROT_FOURIER_PARAM and are listed
               separately.
;

_atom_site_rot_Fourier_atom_site_label
CIF
Modulation parameters are usually looped in separate lists.
Modulated parameters are the atom positions (displacive
modulation), the atomic occupation (occupational modulation)
and/or the atomic anisotropic (or isotropic) displacement
parameters (referred to as modulation of thermal parameters,
since the term 'displacement parameters' is ambiguous in this
context). _atom_site_rot_Fourier_atom_site_label is the code that
identifies a rigid group in a loop in which the Fourier
components of the rotational part of its displacive modulation
are listed. The translational part (if any) would appear in a
separate list (see _atom_site_displace_Fourier_atom_site_label).
This code must match the _atom_site_label of the associated
coordinate list and conform to the rules described in
_atom_site_label.
data_atom_site_rot_Fourier_atom_site_label
    _name                        '_atom_site_rot_Fourier_atom_site_label'
    _category                    atom_site_rot_Fourier
    _type                        char
    _list                        yes
    _list_reference              '_atom_site_rot_Fourier_id'
    _list_link_parent            '_atom_site_label'

    _definition
;              Modulation parameters are usually looped in separate lists.
               Modulated parameters are the atom positions (displacive
               modulation), the atomic occupation (occupational modulation)
               and/or the atomic anisotropic (or isotropic) displacement
               parameters (referred to as modulation of thermal parameters,
               since the term 'displacement parameters' is ambiguous in this
               context). _atom_site_rot_Fourier_atom_site_label is the code that
               identifies a rigid group in a loop in which the Fourier
               components of the rotational part of its displacive modulation
               are listed. The translational part (if any) would appear in a
               separate list (see _atom_site_displace_Fourier_atom_site_label).
               This code must match the _atom_site_label of the associated
               coordinate list and conform to the rules described in
               _atom_site_label.
;

_atom_site_rot_Fourier_axis
CIF
A label identifying the rotation component around a fixed point
of a given rigid group whose modulation is being parameterized by
Fourier series. a, b and c are the basic lattice vectors of the
reference structure. For composites they refer to the reference
structure of each subsystem. a~1~, a~2~ and a~3~ are defined by
_atom_sites_rot_Fourier_axes_description.
data_atom_site_rot_Fourier_axis
    _name                        '_atom_site_rot_Fourier_axis'
    _category                    atom_site_rot_Fourier
    _type                        char
    _list                        yes
    _list_reference              '_atom_site_rot_Fourier_id'
    loop_ _enumeration
          _enumeration_detail    x  'rotation around the a axis'
                                 y  'rotation around the b axis'
                                 z  'rotation around the c axis'
                                 a1 'rotation around an arbitrary a1 axis'
                                 a2 'rotation around an arbitrary a2 axis'
                                 a3 'rotation around an arbitrary a3 axis'
    _definition
;              A label identifying the rotation component around a fixed point
               of a given rigid group whose modulation is being parameterized by
               Fourier series. a, b and c are the basic lattice vectors of the
               reference structure. For composites they refer to the reference
               structure of each subsystem. a~1~, a~2~ and a~3~ are defined by
               _atom_sites_rot_Fourier_axes_description.
;

_atom_site_rot_Fourier_id
CIF
A code identifying each component of the rotational modulation of
a given rigid group when the modulation is expressed in terms of
Fourier series.
data_atom_site_rot_Fourier_id
    _name                        '_atom_site_rot_Fourier_id'
    _category                    atom_site_rot_Fourier
    _type                        char
    _list                        yes
    _list_mandatory              yes
    _list_link_child             '_atom_site_rot_Fourier_param_id'
    _definition
;              A code identifying each component of the rotational modulation of
               a given rigid group when the modulation is expressed in terms of
               Fourier series.
;

_atom_site_rot_Fourier_wave_vector_seq_id
CIF
A numeric code identifying the wave vectors of the Fourier terms
used in the structural model to describe the modulation functions
corresponding to the rotational distortion of a rigid group. This
code must match _atom_site_Fourier_wave_vector_seq_id.
data_atom_site_rot_Fourier_wave_vector_seq_id
    _name                        '_atom_site_rot_Fourier_wave_vector_seq_id'
    _category                    atom_site_rot_Fourier
    _type                        numb
    _list                        yes
    _list_reference              '_atom_site_rot_Fourier_id'
    _list_link_parent            '_atom_site_Fourier_wave_vector_seq_id'
    _definition
;              A numeric code identifying the wave vectors of the Fourier terms
               used in the structural model to describe the modulation functions
               corresponding to the rotational distortion of a rigid group. This
               code must match _atom_site_Fourier_wave_vector_seq_id.
;

#################################
## ATOM_SITE_ROT_FOURIER_PARAM ##
#################################

_ATOM_SITE_ROT_FOURIER_PARAM_[]
CIF
Data items in the ATOM_SITE_ROT_FOURIER_PARAM category record
details about the coefficients of the Fourier series used to
describe the rotational component of the displacive modulation of
a given rigid group. The translational part would appear in a
separate list of items belonging to the
ATOM_SITE_DISPLACE_FOURIER_PARAM category. The Fourier components
are defined in the category ATOM_SITE_ROT_FOURIER and are listed
separately.
Examples:
loop_
         _atom_site_rot_Fourier_param_id
         _atom_site_rot_Fourier_param_cos
         _atom_site_rot_Fourier_param_sin
              SeO4_x_1    -4.2(1)   0.91(3)
              SeO4_y_1     4.3(1)   0.
_atom_sites_rot_Fourier_axes_description
     ;   a1 and a2 are respectively the long molecular axis
         and the axis normal to the mean molecular plane.
     ;
     loop_
         _atom_site_rot_Fourier_param_id
         _atom_site_rot_Fourier_param_modulus
         _atom_site_rot_Fourier_param_phase
              Ph1_a1_1  11.0(2)  0.
              Ph2_a1_1  11.0(2)  0.5
              Bph_a2_1   1.0(1)  0.25
data_atom_site_rot_Fourier_param_[]
    _name                        '_atom_site_rot_Fourier_param_[]'
    _category                    category_overview
    _type                        null
    loop_ _example
          _example_detail
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
;
     loop_
         _atom_site_rot_Fourier_param_id
         _atom_site_rot_Fourier_param_cos
         _atom_site_rot_Fourier_param_sin
              SeO4_x_1    -4.2(1)   0.91(3)
              SeO4_y_1     4.3(1)   0.
;
;
    Example 1 - example corresponding to the one-dimensional incommensurately
                modulated structure of K~2~SeO~4~.
;

;
     _atom_sites_rot_Fourier_axes_description
     ;   a1 and a2 are respectively the long molecular axis
         and the axis normal to the mean molecular plane.
     ;
     loop_
         _atom_site_rot_Fourier_param_id
         _atom_site_rot_Fourier_param_modulus
         _atom_site_rot_Fourier_param_phase
              Ph1_a1_1  11.0(2)  0.
              Ph2_a1_1  11.0(2)  0.5
              Bph_a2_1   1.0(1)  0.25
;
;
    Example 2 - extracted from Baudour & Sanquer [Acta Cryst. (1983), B39,
                75-84]. Note the entry from the ATOM_SITES_ROT_FOURIER
                category to describe collective information relating to all
                the atom sites.
;
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    _definition
;              Data items in the ATOM_SITE_ROT_FOURIER_PARAM category record
               details about the coefficients of the Fourier series used to
               describe the rotational component of the displacive modulation of
               a given rigid group. The translational part would appear in a
               separate list of items belonging to the
               ATOM_SITE_DISPLACE_FOURIER_PARAM category. The Fourier components
               are defined in the category ATOM_SITE_ROT_FOURIER and are listed
               separately.
;

_atom_site_rot_Fourier_param_cos
CIF
The displacive distortion of a given rigid group is not
completely described by _atom_site_displace_Fourier_. The rigid
rotation of the group around a given axis passing through a fixed
point (for example, the centre of mass of the group) is usually
parameterized by Fourier series. Each term of the series
commonly adopts two different representations: the sine-cosine
form,
         Rc cos(2 k r)+Rs sin(2 k r),
and the modulus-argument form,
         |R| cos(2 k r+),
where k is the wave vector of the term and r is the atomic
average position. _atom_site_rot_Fourier_param_cos is the cosine
coefficient (Rc) in degrees corresponding to the Fourier term
defined by _atom_site_rot_Fourier_atom_site_label,
_atom_site_rot_Fourier_axis and
_atom_site_rot_Fourier_wave_vector_seq_id.
data_atom_site_rot_Fourier_param_cos
    _name                        '_atom_site_rot_Fourier_param_cos'
    _category                    atom_site_rot_Fourier_param
    _type                        numb
    _type_conditions             esd
    _list                        yes
    _list_reference              '_atom_site_rot_Fourier_param_id'
    _enumeration_default         0.0
    _units                       'deg'
    _units_detail                'Degrees'
    _definition
;              The displacive distortion of a given rigid group is not
               completely described by _atom_site_displace_Fourier_. The rigid
               rotation of the group around a given axis passing through a fixed
               point (for example, the centre of mass of the group) is usually
               parameterized by Fourier series. Each term of the series
               commonly adopts two different representations: the sine-cosine
               form,
                        Rc cos(2\p k r)+Rs sin(2\p k r),
               and the modulus-argument form,
                        |R| cos(2\p k r+\y),
               where k is the wave vector of the term and r is the atomic
               average position. _atom_site_rot_Fourier_param_cos is the cosine
               coefficient (Rc) in degrees corresponding to the Fourier term
               defined by _atom_site_rot_Fourier_atom_site_label,
               _atom_site_rot_Fourier_axis and
               _atom_site_rot_Fourier_wave_vector_seq_id.
;

_atom_site_rot_Fourier_param_id
CIF
A code identifying the (in general complex) coefficient of each
term present in the Fourier series describing the rotational part
of the displacive modulation of a given rigid group. This code
must match _atom_site_rot_Fourier_id.
data_atom_site_rot_Fourier_param_id
    _name                        '_atom_site_rot_Fourier_param_id'
    _category                    atom_site_rot_Fourier_param
    _type                        char
    _list                        yes
    _list_mandatory              yes
    _list_link_parent            '_atom_site_rot_Fourier_id'
    _definition
;              A code identifying the (in general complex) coefficient of each
               term present in the Fourier series describing the rotational part
               of the displacive modulation of a given rigid group. This code
               must match _atom_site_rot_Fourier_id.
;

_atom_site_rot_Fourier_param_modulus
CIF
The displacive distortion of a given rigid group is not
completely described by _atom_site_displace_Fourier_. The rigid
rotation of the group around a given axis passing through a fixed
point (for example, the centre of mass of the group) is usually
parameterized by Fourier series. Each term of the series
commonly adopts two different representations: the sine-cosine
form,
         Rc cos(2 k r)+Rs sin(2 k r),
and the modulus-argument form,
         |R| cos(2 k r+),
where k is the wave vector of the term and r is the atomic
average position. _atom_site_rot_Fourier_param_modulus is the
modulus (|R|) in degrees of the complex amplitude corresponding
to the Fourier term defined by
_atom_site_rot_Fourier_atom_site_label,
_atom_site_rot_Fourier_axis and
_atom_site_rot_Fourier_wave_vector_seq_id.
data_atom_site_rot_Fourier_param_modulus
    _name                        '_atom_site_rot_Fourier_param_modulus'
    _category                    atom_site_rot_Fourier_param
    _type                        numb
    _type_conditions             esd
    _list                        yes
    _list_reference              '_atom_site_rot_Fourier_param_id'
    _enumeration_range           0.0:
    _enumeration_default         0.0
    _units                       'deg'
    _units_detail                'Degrees'
    _definition
;              The displacive distortion of a given rigid group is not
               completely described by _atom_site_displace_Fourier_. The rigid
               rotation of the group around a given axis passing through a fixed
               point (for example, the centre of mass of the group) is usually
               parameterized by Fourier series. Each term of the series
               commonly adopts two different representations: the sine-cosine
               form,
                        Rc cos(2\p k r)+Rs sin(2\p k r),
               and the modulus-argument form,
                        |R| cos(2\p k r+\y),
               where k is the wave vector of the term and r is the atomic
               average position. _atom_site_rot_Fourier_param_modulus is the
               modulus (|R|) in degrees of the complex amplitude corresponding
               to the Fourier term defined by
               _atom_site_rot_Fourier_atom_site_label,
               _atom_site_rot_Fourier_axis and
               _atom_site_rot_Fourier_wave_vector_seq_id.
;

_atom_site_rot_Fourier_param_phase
CIF
The displacive distortion of a given rigid group is not
completely described by _atom_site_displace_Fourier_. The rigid
rotation of the group around a given axis passing through a fixed
point (for example, the centre of mass of the group) is usually
parameterized by Fourier series. Each term of the series
commonly adopts two different representations: the sine-cosine
form,
         Rc cos(2 k r)+Rs sin(2 k r),
and the modulus-argument form,
         |R| cos(2 k r+),
where k is the wave vector of the term and r is the atomic
average position. _atom_site_rot_Fourier_param_phase is the phase
(/2) in cycles of the complex amplitude corresponding to the
Fourier term defined by _atom_site_rot_Fourier_atom_site_label,
_atom_site_rot_Fourier_axis and
_atom_site_rot_Fourier_wave_vector_seq_id.
data_atom_site_rot_Fourier_param_phase
    _name                        '_atom_site_rot_Fourier_param_phase'
    _category                    atom_site_rot_Fourier_param
    _type                        numb
    _type_conditions             esd
    _list                        yes
    _list_reference              '_atom_site_rot_Fourier_param_id'
    _enumeration_range          -1.0:1.0
    _enumeration_default         0.0
    _units                       cy
    _units_detail                'Cycles'
    _definition
;              The displacive distortion of a given rigid group is not
               completely described by _atom_site_displace_Fourier_. The rigid
               rotation of the group around a given axis passing through a fixed
               point (for example, the centre of mass of the group) is usually
               parameterized by Fourier series. Each term of the series
               commonly adopts two different representations: the sine-cosine
               form,
                        Rc cos(2\p k r)+Rs sin(2\p k r),
               and the modulus-argument form,
                        |R| cos(2\p k r+\y),
               where k is the wave vector of the term and r is the atomic
               average position. _atom_site_rot_Fourier_param_phase is the phase
               (\y/2\p) in cycles of the complex amplitude corresponding to the
               Fourier term defined by _atom_site_rot_Fourier_atom_site_label,
               _atom_site_rot_Fourier_axis and
               _atom_site_rot_Fourier_wave_vector_seq_id.
;

_atom_site_rot_Fourier_param_sin
CIF
The displacive distortion of a given rigid group is not
completely described by _atom_site_displace_Fourier_. The rigid
rotation of the group around a given axis passing through a fixed
point (for example, the centre of mass of the group) is usually
parameterized by Fourier series. Each term of the series
commonly adopts two different representations: the sine-cosine
form,
         Rc cos(2 k r)+Rs sin(2 k r),
and the modulus-argument form,
         |R| cos(2 k r+),
where k is the wave vector of the term and r is the atomic
average position. _atom_site_rot_Fourier_param_sin is the sine
coefficient (Rs) in degrees corresponding to the Fourier term
defined by _atom_site_rot_Fourier_atom_site_label,
_atom_site_rot_Fourier_axis and
_atom_site_rot_Fourier_wave_vector_seq_id.
data_atom_site_rot_Fourier_param_sin
    _name                        '_atom_site_rot_Fourier_param_sin'
    _category                    atom_site_rot_Fourier_param
    _type                        numb
    _type_conditions             esd
    _list                        yes
    _list_reference              '_atom_site_rot_Fourier_param_id'
    _enumeration_default         0.0
    _units                       'deg'
    _units_detail                'Degrees'
    _definition
;              The displacive distortion of a given rigid group is not
               completely described by _atom_site_displace_Fourier_. The rigid
               rotation of the group around a given axis passing through a fixed
               point (for example, the centre of mass of the group) is usually
               parameterized by Fourier series. Each term of the series
               commonly adopts two different representations: the sine-cosine
               form,
                        Rc cos(2\p k r)+Rs sin(2\p k r),
               and the modulus-argument form,
                        |R| cos(2\p k r+\y),
               where k is the wave vector of the term and r is the atomic
               average position. _atom_site_rot_Fourier_param_sin is the sine
               coefficient (Rs) in degrees corresponding to the Fourier term
               defined by _atom_site_rot_Fourier_atom_site_label,
               _atom_site_rot_Fourier_axis and
               _atom_site_rot_Fourier_wave_vector_seq_id.
;

#########################
## ATOM_SITE_U_FOURIER ##
#########################

_ATOM_SITES_DISPLACE_FOURIER_[]
CIF
Data items in the ATOM_SITES_DISPLACE_FOURIER category record
details common to the displacive modulation of atom sites in a
modulated structure.
Details for individual atom sites are described by data items in
the ATOM_SITE_DISPLACE_FOURIER category.
Example:
_atom_sites_displace_Fourier_axes_description
     ;   a1 and a2 are respectively the long molecular axis
         and the axis normal to the mean molecular plane.
     ;
data_atom_sites_displace_Fourier_[]
    _name                        '_atom_sites_displace_Fourier_[]'
    _category                    category_overview
    _type                        null
    loop_ _example
          _example_detail
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
;     _atom_sites_displace_Fourier_axes_description
     ;   a1 and a2 are respectively the long molecular axis
         and the axis normal to the mean molecular plane.
     ;
;
;
    Example 1 - extracted from Baudour & Sanquer [Acta Cryst. (1983), B39,
                75-84].
;
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    _definition
;              Data items in the ATOM_SITES_DISPLACE_FOURIER category record
               details common to the displacive modulation of atom sites in a
               modulated structure.

               Details for individual atom sites are described by data items in
               the ATOM_SITE_DISPLACE_FOURIER category.
;

_atom_sites_displace_Fourier_axes_description
CIF
The definition of the axes used for describing the displacive
modulation, parameterized by Fourier series, when they are other
than the crystallographic axes.
Example:
a1 and a2 are respectively the long molecular axis
               and the axis normal to the mean molecular plane.
data_atom_sites_displace_Fourier_axes_description
    _name                        '_atom_sites_displace_Fourier_axes_description'
    _category                    atom_sites_displace_Fourier
    _type                        char
    _example
;              a1 and a2 are respectively the long molecular axis
               and the axis normal to the mean molecular plane.
;
    _definition
;              The definition of the axes used for describing the displacive
               modulation, parameterized by Fourier series, when they are other
               than the crystallographic axes.
;

###########################
## ATOM_SITES_MODULATION ##
###########################

_ATOM_SITES_MODULATION_[]
CIF
Data items in the ATOM_SITES_MODULATION category record details
common to the modulation of atom sites in a modulated structure.
data_atom_sites_modulation_[]
    _name                        '_atom_sites_modulation_[]'
    _category                    category_overview
    _type                        null
#     loop_ _example
#           _example_detail
# # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# ;
#        No example
# ;
# ;
# ;
# # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    _definition
;              Data items in the ATOM_SITES_MODULATION category record details
               common to the modulation of atom sites in a modulated structure.
;

_atom_sites_modulation_global_phase_t
CIF
Data names:
_atom_sites_modulation_global_phase_t_1
_atom_sites_modulation_global_phase_t_2
_atom_sites_modulation_global_phase_t_3
_atom_sites_modulation_global_phase_t_4
_atom_sites_modulation_global_phase_t_5
_atom_sites_modulation_global_phase_t_6
_atom_sites_modulation_global_phase_t_7
_atom_sites_modulation_global_phase_t_8
The initial phases, in cycles, of the modulation waves. For
incommensurate structures they are irrelevant. However, they are
essential for the description of commensurate structures within
the superspace formalism, since they determine the space group
of the commensurate superstructure [see Perez-Mato,
Madariaga, Zuiga & Garcia Arribas (1987) or van
Smaalen (1995)]. Note that for composites described
using a single data block, the initial phases for each subsystem
are derived using the W matrices (see _cell_subsystem_matrix_W_)
from a unique set of global phases whose values are assigned to
_atom_sites_modulation_global_phase_t_. Detailed information can
be found in van Smaalen (1995).
Ref: Perez-Mato, J. M., Madariaga, G., Zuiga, F. J. & Garcia
Arribas, A. (1987). Acta Cryst. A43, 216-226. Smaalen, S. van
(1995). Crystallogr. Rev. 4, 79-202.
data_atom_sites_modulation_global_phase_t_
    loop_ _name                  '_atom_sites_modulation_global_phase_t_1'
                                 '_atom_sites_modulation_global_phase_t_2'
                                 '_atom_sites_modulation_global_phase_t_3'
                                 '_atom_sites_modulation_global_phase_t_4'
                                 '_atom_sites_modulation_global_phase_t_5'
                                 '_atom_sites_modulation_global_phase_t_6'
                                 '_atom_sites_modulation_global_phase_t_7'
                                 '_atom_sites_modulation_global_phase_t_8'
    _category                    atom_sites_modulation
    _type                        numb
    _enumeration_range           -1.0:1.0
    _enumeration_default         0.0
    _units                       cy
    _units_detail                'Cycles'
    _definition
;              The initial phases, in cycles, of the modulation waves. For
               incommensurate structures they are irrelevant. However, they are
               essential for the description of commensurate structures within
               the superspace formalism, since they determine the space group
               of the commensurate superstructure [see Perez-Mato,
               Madariaga, Zu\~niga & Garcia Arribas (1987) or van
               Smaalen (1995)]. Note that for composites described
               using a single data block, the initial phases for each subsystem
               are derived using the W matrices (see _cell_subsystem_matrix_W_)
               from a unique set of global phases whose values are assigned to
               _atom_sites_modulation_global_phase_t_. Detailed information can
               be found in van Smaalen (1995).

               Ref: Perez-Mato, J. M., Madariaga, G., Zu\~niga, F. J. & Garcia
               Arribas, A. (1987). Acta Cryst. A43, 216-226. Smaalen, S. van
               (1995). Crystallogr. Rev. 4, 79-202.
;


############################
## ATOM_SITES_ROT_FOURIER ##
############################

_ATOM_SITES_ROT_FOURIER_[]
CIF
Data items in the ATOM_SITES_ROT_FOURIER category record
details about the rotational component of the displacive
modulation of a given rigid group as a whole.
Details for individual atom sites are described by data items in
the ATOM_SITES_ROT_FOURIER category.
Example:
_atom_sites_rot_Fourier_axes_description
     ;   a1 and a2 are respectively the long molecular axis
         and the axis normal to the mean molecular plane.
     ;
data_atom_sites_rot_Fourier_[]
    _name                        '_atom_sites_rot_Fourier_[]'
    _category                    category_overview
    _type                        null
    loop_ _example
          _example_detail
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
;
     _atom_sites_rot_Fourier_axes_description
     ;   a1 and a2 are respectively the long molecular axis
         and the axis normal to the mean molecular plane.
     ;
;
;
    Example 1 - extracted from Baudour & Sanquer [Acta Cryst. (1983), B39,
                75-84].
;
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    _definition
;              Data items in the ATOM_SITES_ROT_FOURIER category record
               details about the rotational component of the displacive
               modulation of a given rigid group as a whole.

               Details for individual atom sites are described by data items in
               the ATOM_SITES_ROT_FOURIER category.
;

_atom_sites_rot_Fourier_axes_description
CIF
The definition of the axes used for describing the rotational
part of the displacive modulation of a given rigid group,
parameterized by Fourier series, when they are other than the
crystallographic axes.
Example:
a1 and a2 are respectively the long molecular axis
               and the axis normal to the mean molecular plane.
data_atom_sites_rot_Fourier_axes_description
    _name                        '_atom_sites_rot_Fourier_axes_description'
    _category                    atom_sites_rot_Fourier
    _type                        char
    _example
;              a1 and a2 are respectively the long molecular axis
               and the axis normal to the mean molecular plane.
;
    _definition
;              The definition of the axes used for describing the rotational
               part of the displacive modulation of a given rigid group,
               parameterized by Fourier series, when they are other than the
               crystallographic axes.
;

################
## AUDIT_LINK ##
################

_CELL_[MS]
CIF
Data items in the CELL category record details about
the crystallographic cell parameters and their measurement.
This category is already defined in the core CIF dictionary
but is extended in this dictionary by the addition of some items
that are specific for modulated and composite structures.
data_cell[ms]
    _name                        '_cell_[ms]'
    _category                    category_overview
    _type                        null
      _definition
;              Data items in the CELL category record details about
               the crystallographic cell parameters and their measurement.
               This category is already defined in the core CIF dictionary
               but is extended in this dictionary by the addition of some items
               that are specific for modulated and composite structures.
;

_cell_modulation_dimension
CIF
Number of additional reciprocal vectors needed to index the
whole diffraction pattern using integer Miller indices.
data_cell_modulation_dimension
    _name                        '_cell_modulation_dimension'
    _category                    cell
    _type                        numb
    _enumeration_range           1:8
    _definition
;              Number of additional reciprocal vectors needed to index the
               whole diffraction pattern using integer Miller indices.
;

_cell_reciprocal_basis_description
CIF
Definition of the higher-dimensional basis with respect to which
the Miller indices are defined. The three-dimensional basis used
to index the additional wave vectors should be clearly indicated.
Examples:
a*,b*,c* (reciprocal basis spanning the lattice of main
               reflections) and q (incommensurate with respect to a*,b*,c*)
The diffraction pattern can be indexed with four integers based
               on the reciprocal vectors a*~1~=a*~11~, a*~2~=a*~12~,
               a*~3~=a*~13~, a*~4~=a*~21~. a*~1j~ (j=1,2,3) index the
               main reflections of the 1st subsystem. a*~21~ is incommensurate
               with a*~11~.
data_cell_reciprocal_basis_description
    _name                        '_cell_reciprocal_basis_description'
    _category                    cell
    _type                        char
    loop_ _example
          _example_detail
;              a*,b*,c* (reciprocal basis spanning the lattice of main
               reflections) and q (incommensurate with respect to a*,b*,c*)
;
;
   Typical choice for a one-dimensional incommensurate structure.
;
;              The diffraction pattern can be indexed with four integers based
               on the reciprocal vectors a*~1~=a*~11~, a*~2~=a*~12~,
               a*~3~=a*~13~, a*~4~=a*~21~. a*~1j~ (j=1,2,3) index the
               main reflections of the 1st subsystem. a*~21~ is incommensurate
               with a*~11~.
;
;
   Common choice for a misfit layer compound composed of two
               subsystems that have in common two reciprocal vectors. Extracted
               from van Smaalen [Crystallogr. Rev. (1995), 4, 79-202].
;
    _definition
;              Definition of the higher-dimensional basis with respect to which
               the Miller indices are defined. The three-dimensional basis used
               to index the additional wave vectors should be clearly indicated.
;

#data_cell_reciprocal_basis_vect_number
#    _name                        '_cell_reciprocal_basis_vect_number'
#    _category                    cell
#    _type                        numb
#    _enumeration_range           4:11
#    _definition
#;              Minimal number of reciprocal vectors spanning the higher-
#               dimensional reciprocal basis. Their number  must match
#               _cell_modulation_dimension + 3.
#;

####################
## CELL_SUBSYSTEM ##
####################

_CELL_SUBSYSTEM_[MS]
CIF
Data items in the CELL_SUBSYSTEM category record details about
the crystallographic cell parameters of each subsystem present in
a composite.
Example:
_cell_subsystems_number                  2
     loop_
         _cell_subsystem_code
         _cell_subsystem_description
         _cell_subsystem_matrix_W_1_1
         _cell_subsystem_matrix_W_1_4
         _cell_subsystem_matrix_W_2_2
         _cell_subsystem_matrix_W_3_3
         _cell_subsystem_matrix_W_4_1
         _cell_subsystem_matrix_W_4_4
                 NbS2            '1st subsystem'  1 0 1 1 0 1
                 LaS             '2nd subsystem'  0 1 1 1 1 0
data_cell_subsystem_[ms]
    _name                        '_cell_subsystem_[ms]'
    _category                    category_overview
    _type                        null
    loop_ _example
          _example_detail
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
;
     _cell_subsystems_number                  2
     loop_
         _cell_subsystem_code
         _cell_subsystem_description
         _cell_subsystem_matrix_W_1_1
         _cell_subsystem_matrix_W_1_4
         _cell_subsystem_matrix_W_2_2
         _cell_subsystem_matrix_W_3_3
         _cell_subsystem_matrix_W_4_1
         _cell_subsystem_matrix_W_4_4
                 NbS2            '1st subsystem'  1 0 1 1 0 1
                 LaS             '2nd subsystem'  0 1 1 1 1 0
;
;
    Example 1 - based on the modulated structure of inorganic misfit layer
    (LaS)~1.14~NbS~2~ [Smaalen, S. van (1991). J. Phys. Condens.
    Matter, 3, 1247-1263].
;
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
      _definition
;              Data items in the CELL_SUBSYSTEM category record details about
               the crystallographic cell parameters of each subsystem present in
               a composite.
;

_cell_subsystem_code
CIF
The code identifying uniquely a certain composite subsystem.
This code is used to identify the data blocks that contain
the structural information associated with the subsystem.
Example:
NbS2
data_cell_subsystem_code
    _name                        '_cell_subsystem_code'
    _category                    cell_subsystem
    _type                        char
    _list                        yes
    _example                     'NbS2'
    _definition
;              The code identifying uniquely a certain composite subsystem.
               This code is used to identify the data blocks that contain
               the structural information associated with the subsystem.
;

_cell_subsystem_description
CIF
Description of each subsystem defining a composite structurally.
The number of definitions must match the number given in
_cell_subsystems_number.
Example:
NbS2 part of the layer compound (LaS)~1.14~NbS~2~
data_cell_subsystem_description
    _name                        '_cell_subsystem_description'
    _category                    cell_subsystem
    _type                        char
    _list                        yes
    _example
                            'NbS2 part of the layer compound (LaS)~1.14~NbS~2~'
    _definition
;              Description of each subsystem defining a composite structurally.
               The number of definitions must match the number given in
               _cell_subsystems_number.
;

_cell_subsystem_matrix_W
CIF
Data names:
_cell_subsystem_matrix_W_1_1
_cell_subsystem_matrix_W_1_2
_cell_subsystem_matrix_W_1_3
_cell_subsystem_matrix_W_1_4
_cell_subsystem_matrix_W_1_5
_cell_subsystem_matrix_W_1_6
_cell_subsystem_matrix_W_1_7
_cell_subsystem_matrix_W_1_8
_cell_subsystem_matrix_W_1_9
_cell_subsystem_matrix_W_1_10
_cell_subsystem_matrix_W_1_11
_cell_subsystem_matrix_W_2_1
_cell_subsystem_matrix_W_2_2
_cell_subsystem_matrix_W_2_3
_cell_subsystem_matrix_W_2_4
_cell_subsystem_matrix_W_2_5
_cell_subsystem_matrix_W_2_6
_cell_subsystem_matrix_W_2_7
_cell_subsystem_matrix_W_2_8
_cell_subsystem_matrix_W_2_9
_cell_subsystem_matrix_W_2_10
_cell_subsystem_matrix_W_2_11
_cell_subsystem_matrix_W_3_1
_cell_subsystem_matrix_W_3_2
_cell_subsystem_matrix_W_3_3
_cell_subsystem_matrix_W_3_4
_cell_subsystem_matrix_W_3_5
_cell_subsystem_matrix_W_3_6
_cell_subsystem_matrix_W_3_7
_cell_subsystem_matrix_W_3_8
_cell_subsystem_matrix_W_3_9
_cell_subsystem_matrix_W_3_10
_cell_subsystem_matrix_W_3_11
_cell_subsystem_matrix_W_4_1
_cell_subsystem_matrix_W_4_2
_cell_subsystem_matrix_W_4_3
_cell_subsystem_matrix_W_4_4
_cell_subsystem_matrix_W_4_5
_cell_subsystem_matrix_W_4_6
_cell_subsystem_matrix_W_4_7
_cell_subsystem_matrix_W_4_8
_cell_subsystem_matrix_W_4_9
_cell_subsystem_matrix_W_4_10
_cell_subsystem_matrix_W_4_11
_cell_subsystem_matrix_W_5_1
_cell_subsystem_matrix_W_5_2
_cell_subsystem_matrix_W_5_3
_cell_subsystem_matrix_W_5_4
_cell_subsystem_matrix_W_5_5
_cell_subsystem_matrix_W_5_6
_cell_subsystem_matrix_W_5_7
_cell_subsystem_matrix_W_5_8
_cell_subsystem_matrix_W_5_9
_cell_subsystem_matrix_W_5_10
_cell_subsystem_matrix_W_5_11
_cell_subsystem_matrix_W_6_1
_cell_subsystem_matrix_W_6_2
_cell_subsystem_matrix_W_6_3
_cell_subsystem_matrix_W_6_4
_cell_subsystem_matrix_W_6_5
_cell_subsystem_matrix_W_6_6
_cell_subsystem_matrix_W_6_7
_cell_subsystem_matrix_W_6_8
_cell_subsystem_matrix_W_6_9
_cell_subsystem_matrix_W_6_10
_cell_subsystem_matrix_W_6_11
_cell_subsystem_matrix_W_7_1
_cell_subsystem_matrix_W_7_2
_cell_subsystem_matrix_W_7_3
_cell_subsystem_matrix_W_7_4
_cell_subsystem_matrix_W_7_5
_cell_subsystem_matrix_W_7_6
_cell_subsystem_matrix_W_7_7
_cell_subsystem_matrix_W_7_8
_cell_subsystem_matrix_W_7_9
_cell_subsystem_matrix_W_7_10
_cell_subsystem_matrix_W_7_11
_cell_subsystem_matrix_W_8_1
_cell_subsystem_matrix_W_8_2
_cell_subsystem_matrix_W_8_3
_cell_subsystem_matrix_W_8_4
_cell_subsystem_matrix_W_8_5
_cell_subsystem_matrix_W_8_6
_cell_subsystem_matrix_W_8_7
_cell_subsystem_matrix_W_8_8
_cell_subsystem_matrix_W_8_9
_cell_subsystem_matrix_W_8_10
_cell_subsystem_matrix_W_8_11
_cell_subsystem_matrix_W_9_1
_cell_subsystem_matrix_W_9_2
_cell_subsystem_matrix_W_9_3
_cell_subsystem_matrix_W_9_4
_cell_subsystem_matrix_W_9_5
_cell_subsystem_matrix_W_9_6
_cell_subsystem_matrix_W_9_7
_cell_subsystem_matrix_W_9_8
_cell_subsystem_matrix_W_9_9
_cell_subsystem_matrix_W_9_10
_cell_subsystem_matrix_W_9_11
_cell_subsystem_matrix_W_10_1
_cell_subsystem_matrix_W_10_2
_cell_subsystem_matrix_W_10_3
_cell_subsystem_matrix_W_10_4
_cell_subsystem_matrix_W_10_5
_cell_subsystem_matrix_W_10_6
_cell_subsystem_matrix_W_10_7
_cell_subsystem_matrix_W_10_8
_cell_subsystem_matrix_W_10_9
_cell_subsystem_matrix_W_10_10
_cell_subsystem_matrix_W_10_11
_cell_subsystem_matrix_W_11_1
_cell_subsystem_matrix_W_11_2
_cell_subsystem_matrix_W_11_3
_cell_subsystem_matrix_W_11_4
_cell_subsystem_matrix_W_11_5
_cell_subsystem_matrix_W_11_6
_cell_subsystem_matrix_W_11_7
_cell_subsystem_matrix_W_11_8
_cell_subsystem_matrix_W_11_9
_cell_subsystem_matrix_W_11_10
_cell_subsystem_matrix_W_11_11
In the case of composites, for each subsystem the matrix W as
defined in van Smaalen (1991); see also van Smaalen (1995).
Its dimension must match
(_cell_modulation_dimension+3)*(_cell_modulation_dimension+3).
Intergrowth compounds are composed of several periodic
substructures in which the reciprocal lattices of two different
subsystems are incommensurate in at least one direction. The
indexing of the whole diffraction diagram with integer indices
requires more than three reciprocal basic vectors. However, the
distinction between main reflections and satellites is not as
obvious as in normal incommensurate structures. Indeed, true
satellites are normally difficult to locate for composites and
the modulation wave vectors are reciprocal vectors of the
other subsystem(s) referred to the reciprocal basis of one
of them. The choice of the enlarged reciprocal basis
{a*, b*, c*, q~1~,..., q~d~} is completely arbitrary, but
the reciprocal basis of each subsystem is always known through
the W matrices. These matrices [(3+d)x(3+d)-dimensional], one for
each subsystem, can be blocked as follows:
                  (Z^^~3~    Z^^~d~)
           W^^= (                    )
                  (V^^~3~    V^^~d~),
the dimension of each block being (3x3), (3xd), (dx3) and (dxd)
for Z^^~3~, Z^^~d~, V^^~3~ and V^^~d~, respectively. For
example, Z^^ expresses the reciprocal basis of each subsystem
in terms of the basis {a*, b*, c*, q~1~ ,..., q~d~}.
W^^ also gives the irrational components of the modulation wave
vectors of each subsystem in its own three-dimensional reciprocal
basis {a~~*, b~~*, c~~*} and the superspace group of
a given subsystem from the unique superspace group of the
composite.
The structure of these materials is always described by a set of
incommensurate structures, one for each subsystem. The atomic
coordinates, modulation parameters and wave vectors used for
describing the modulation(s) are always referred to the (direct
or reciprocal) basis of each particular subsystem. Although
expressing the structural results in the chosen common basis is
possible (using the matrices W), it is less confusing to use
this alternative description. Atomic coordinates are only
referred to a common basis when interatomic distances are
calculated. Usually, the reciprocal vectors {a*, b* and c*}
span the lattice of main reflections of one of the subsystems and
therefore its W matrix is the unit matrix.
For composites described in a single data block using
*_subsystem_code pointers, the cell parameters, the superspace
group and the measured modulation wave vectors (see
CELL_WAVE_VECTOR below) correspond to the reciprocal basis
described in _cell_reciprocal_basis_description and coincide
with the reciprocal basis of the specific subsystem (if any)
whose W matrix is the unit matrix. The cell parameters and the
symmetry of the remaining subsystems can be derived using the
appropriate W matrices. In any case (single or multiblock CIF),
the values assigned to the items describing the atomic parameters
(including the wave vectors used to describe the modulations)
are always the same and are referred to the basis of each
particular subsystem. Such a basis will be explicitly given in a
multiblock CIF or should be calculated (with the appropriate W
matrix) in the case of a single block description of the
composite.
Ref: Smaalen, S. van (1991). Phys. Rev. B, 43, 11330-11341.
Smaalen, S. van (1995). Crystallogr. Rev. 4, 79-202.
data_cell_subsystem_matrix_W_
    loop_ _name                  '_cell_subsystem_matrix_W_1_1'
                                 '_cell_subsystem_matrix_W_1_2'
                                 '_cell_subsystem_matrix_W_1_3'
                                 '_cell_subsystem_matrix_W_1_4'
                                 '_cell_subsystem_matrix_W_1_5'
                                 '_cell_subsystem_matrix_W_1_6'
                                 '_cell_subsystem_matrix_W_1_7'
                                 '_cell_subsystem_matrix_W_1_8'
                                 '_cell_subsystem_matrix_W_1_9'
                                 '_cell_subsystem_matrix_W_1_10'
                                 '_cell_subsystem_matrix_W_1_11'
                                 '_cell_subsystem_matrix_W_2_1'
                                 '_cell_subsystem_matrix_W_2_2'
                                 '_cell_subsystem_matrix_W_2_3'
                                 '_cell_subsystem_matrix_W_2_4'
                                 '_cell_subsystem_matrix_W_2_5'
                                 '_cell_subsystem_matrix_W_2_6'
                                 '_cell_subsystem_matrix_W_2_7'
                                 '_cell_subsystem_matrix_W_2_8'
                                 '_cell_subsystem_matrix_W_2_9'
                                 '_cell_subsystem_matrix_W_2_10'
                                 '_cell_subsystem_matrix_W_2_11'
                                 '_cell_subsystem_matrix_W_3_1'
                                 '_cell_subsystem_matrix_W_3_2'
                                 '_cell_subsystem_matrix_W_3_3'
                                 '_cell_subsystem_matrix_W_3_4'
                                 '_cell_subsystem_matrix_W_3_5'
                                 '_cell_subsystem_matrix_W_3_6'
                                 '_cell_subsystem_matrix_W_3_7'
                                 '_cell_subsystem_matrix_W_3_8'
                                 '_cell_subsystem_matrix_W_3_9'
                                 '_cell_subsystem_matrix_W_3_10'
                                 '_cell_subsystem_matrix_W_3_11'
                                 '_cell_subsystem_matrix_W_4_1'
                                 '_cell_subsystem_matrix_W_4_2'
                                 '_cell_subsystem_matrix_W_4_3'
                                 '_cell_subsystem_matrix_W_4_4'
                                 '_cell_subsystem_matrix_W_4_5'
                                 '_cell_subsystem_matrix_W_4_6'
                                 '_cell_subsystem_matrix_W_4_7'
                                 '_cell_subsystem_matrix_W_4_8'
                                 '_cell_subsystem_matrix_W_4_9'
                                 '_cell_subsystem_matrix_W_4_10'
                                 '_cell_subsystem_matrix_W_4_11'
                                 '_cell_subsystem_matrix_W_5_1'
                                 '_cell_subsystem_matrix_W_5_2'
                                 '_cell_subsystem_matrix_W_5_3'
                                 '_cell_subsystem_matrix_W_5_4'
                                 '_cell_subsystem_matrix_W_5_5'
                                 '_cell_subsystem_matrix_W_5_6'
                                 '_cell_subsystem_matrix_W_5_7'
                                 '_cell_subsystem_matrix_W_5_8'
                                 '_cell_subsystem_matrix_W_5_9'
                                 '_cell_subsystem_matrix_W_5_10'
                                 '_cell_subsystem_matrix_W_5_11'
                                 '_cell_subsystem_matrix_W_6_1'
                                 '_cell_subsystem_matrix_W_6_2'
                                 '_cell_subsystem_matrix_W_6_3'
                                 '_cell_subsystem_matrix_W_6_4'
                                 '_cell_subsystem_matrix_W_6_5'
                                 '_cell_subsystem_matrix_W_6_6'
                                 '_cell_subsystem_matrix_W_6_7'
                                 '_cell_subsystem_matrix_W_6_8'
                                 '_cell_subsystem_matrix_W_6_9'
                                 '_cell_subsystem_matrix_W_6_10'
                                 '_cell_subsystem_matrix_W_6_11'
                                 '_cell_subsystem_matrix_W_7_1'
                                 '_cell_subsystem_matrix_W_7_2'
                                 '_cell_subsystem_matrix_W_7_3'
                                 '_cell_subsystem_matrix_W_7_4'
                                 '_cell_subsystem_matrix_W_7_5'
                                 '_cell_subsystem_matrix_W_7_6'
                                 '_cell_subsystem_matrix_W_7_7'
                                 '_cell_subsystem_matrix_W_7_8'
                                 '_cell_subsystem_matrix_W_7_9'
                                 '_cell_subsystem_matrix_W_7_10'
                                 '_cell_subsystem_matrix_W_7_11'
                                 '_cell_subsystem_matrix_W_8_1'
                                 '_cell_subsystem_matrix_W_8_2'
                                 '_cell_subsystem_matrix_W_8_3'
                                 '_cell_subsystem_matrix_W_8_4'
                                 '_cell_subsystem_matrix_W_8_5'
                                 '_cell_subsystem_matrix_W_8_6'
                                 '_cell_subsystem_matrix_W_8_7'
                                 '_cell_subsystem_matrix_W_8_8'
                                 '_cell_subsystem_matrix_W_8_9'
                                 '_cell_subsystem_matrix_W_8_10'
                                 '_cell_subsystem_matrix_W_8_11'
                                 '_cell_subsystem_matrix_W_9_1'
                                 '_cell_subsystem_matrix_W_9_2'
                                 '_cell_subsystem_matrix_W_9_3'
                                 '_cell_subsystem_matrix_W_9_4'
                                 '_cell_subsystem_matrix_W_9_5'
                                 '_cell_subsystem_matrix_W_9_6'
                                 '_cell_subsystem_matrix_W_9_7'
                                 '_cell_subsystem_matrix_W_9_8'
                                 '_cell_subsystem_matrix_W_9_9'
                                 '_cell_subsystem_matrix_W_9_10'
                                 '_cell_subsystem_matrix_W_9_11'
                                 '_cell_subsystem_matrix_W_10_1'
                                 '_cell_subsystem_matrix_W_10_2'
                                 '_cell_subsystem_matrix_W_10_3'
                                 '_cell_subsystem_matrix_W_10_4'
                                 '_cell_subsystem_matrix_W_10_5'
                                 '_cell_subsystem_matrix_W_10_6'
                                 '_cell_subsystem_matrix_W_10_7'
                                 '_cell_subsystem_matrix_W_10_8'
                                 '_cell_subsystem_matrix_W_10_9'
                                 '_cell_subsystem_matrix_W_10_10'
                                 '_cell_subsystem_matrix_W_10_11'
                                 '_cell_subsystem_matrix_W_11_1'
                                 '_cell_subsystem_matrix_W_11_2'
                                 '_cell_subsystem_matrix_W_11_3'
                                 '_cell_subsystem_matrix_W_11_4'
                                 '_cell_subsystem_matrix_W_11_5'
                                 '_cell_subsystem_matrix_W_11_6'
                                 '_cell_subsystem_matrix_W_11_7'
                                 '_cell_subsystem_matrix_W_11_8'
                                 '_cell_subsystem_matrix_W_11_9'
                                 '_cell_subsystem_matrix_W_11_10'
                                 '_cell_subsystem_matrix_W_11_11'
    _category                    cell_subsystem
    _type                        numb
#     _type_construct              '( *-?[0-9]+)'
    _list                        yes
    _list_reference              '_cell_subsystem_code'
    _enumeration_default         0
    _definition
;              In the case of composites, for each subsystem the matrix W as
               defined in van Smaalen (1991); see also van Smaalen (1995).
               Its dimension must match
               (_cell_modulation_dimension+3)*(_cell_modulation_dimension+3).

               Intergrowth compounds are composed of several periodic
               substructures in which the reciprocal lattices of two different
               subsystems are incommensurate in at least one direction. The
               indexing of the whole diffraction diagram with integer indices
               requires more than three reciprocal basic vectors. However, the
               distinction between main reflections and satellites is not as
               obvious as in normal incommensurate structures. Indeed, true
               satellites are normally difficult to locate for composites and
               the modulation wave vectors are reciprocal vectors of the
               other subsystem(s) referred to the reciprocal basis of one
               of them. The choice of the enlarged reciprocal basis
               {a*, b*, c*, q~1~,..., q~d~} is completely arbitrary, but
               the reciprocal basis of each subsystem is always known through
               the W matrices. These matrices [(3+d)x(3+d)-dimensional], one for
               each subsystem, can be blocked as follows:

                                 (Z^\n^~3~    Z^\n^~d~)
                          W^\n^= (                    )
                                 (V^\n^~3~    V^\n^~d~),

               the dimension of each block being (3x3), (3xd), (dx3) and (dxd)
               for Z^\n^~3~, Z^\n^~d~, V^\n^~3~ and V^\n^~d~, respectively. For
               example, Z^\n^ expresses the reciprocal basis of each subsystem
               in terms of the basis {a*, b*, c*, q~1~ ,..., q~d~}.
               W^\n^ also gives the irrational components of the modulation wave
               vectors of each subsystem in its own three-dimensional reciprocal
               basis {a~\n~*, b~\n~*, c~\n~*} and the superspace group of
               a given subsystem from the unique superspace group of the
               composite.

               The structure of these materials is always described by a set of
               incommensurate structures, one for each subsystem. The atomic
               coordinates, modulation parameters and wave vectors used for
               describing the modulation(s) are always referred to the (direct
               or reciprocal) basis of each particular subsystem. Although
               expressing the structural results in the chosen common basis is
               possible (using the matrices W), it is less confusing to use
               this alternative description. Atomic coordinates are only
               referred to a common basis when interatomic distances are
               calculated. Usually, the reciprocal vectors {a*, b* and c*}
               span the lattice of main reflections of one of the subsystems and
               therefore its W matrix is the unit matrix.

               For composites described in a single data block using
               *_subsystem_code pointers, the cell parameters, the superspace
               group and the measured modulation wave vectors (see
               CELL_WAVE_VECTOR below) correspond to the reciprocal basis
               described in _cell_reciprocal_basis_description and coincide
               with the reciprocal basis of the specific subsystem (if any)
               whose W matrix is the unit matrix. The cell parameters and the
               symmetry of the remaining subsystems can be derived using the
               appropriate W matrices. In any case (single or multiblock CIF),
               the values assigned to the items describing the atomic parameters
               (including the wave vectors used to describe the modulations)
               are always the same and are referred to the basis of each
               particular subsystem. Such a basis will be explicitly given in a
               multiblock CIF or should be calculated (with the appropriate W
               matrix) in the case of a single block description of the
               composite.

               Ref: Smaalen, S. van (1991). Phys. Rev. B, 43, 11330-11341.
               Smaalen, S. van (1995). Crystallogr. Rev. 4, 79-202.
;

#####################
## CELL_SUBSYSTEMS ##
#####################

_CELL_SUBSYSTEMS_[MS]
CIF
Data items in the CELL_SUBSYSTEMS category describe the gross
structure of the subsystems present in a composite.
Example:
_cell_subsystems_number                  2
data_cell_subsystems_[ms]
    _name                        '_cell_subsystems_[ms]'
    _category                    category_overview
    _type                        null
    loop_ _example
          _example_detail
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
;
     _cell_subsystems_number                  2
;
;
    Example 1 - based on the modulated structure of inorganic misfit layer
    (LaS)~1.14~NbS~2~ [Smaalen, S. van (1991). J. Phys. Condens.
    Matter, 3, 1247-1263].
;
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
      _definition
;              Data items in the CELL_SUBSYSTEMS category describe the gross
               structure of the subsystems present in a composite.
;

_cell_subsystems_number
CIF
The number of subsystems used to define the structural model of
a composite structure.
data_cell_subsystems_number
    _name                        '_cell_subsystems_number'
    _category                    cell_subsystems
    _type                        numb
    _enumeration_range           2:
    _definition
;              The number of subsystems used to define the structural model of
               a composite structure.
;

######################
## CELL_WAVE_VECTOR ##
######################

_CELL_WAVE_VECTOR_[MS]
CIF
Data items in the CELL_WAVE_VECTOR category list the
independent modulation wave vectors q~i~. The diffraction
vectors are indexed in the form
ha*+kb*+lc*+sum~i~ (m~i~q~i~). sum~i~ is taken
over all wave vectors. In this version of the dictionary, the
index i has been restricted to be less than 9.
Example:
loop_
         _cell_wave_vector_seq_id
         _cell_wave_vector_x
                1       0.318(5)
data_cell_wave_vector_[ms]
    _name                        '_cell_wave_vector_[ms]'
    _category                    category_overview
    _type                        null
    loop_ _example
          _example_detail
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
;
     loop_
         _cell_wave_vector_seq_id
         _cell_wave_vector_x
                1       0.318(5)
;
;
    Example 1 - example corresponding to the one-dimensional incommensurately
                modulated structure of K~2~SeO~4~.
;
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
      _definition
;              Data items in the CELL_WAVE_VECTOR category list the
               independent modulation wave vectors q~i~. The diffraction
               vectors are indexed in the form
               ha*+kb*+lc*+sum~i~ (m~i~q~i~). sum~i~ is taken
               over all wave vectors. In this version of the dictionary, the
               index i has been restricted to be less than 9.
;

_cell_wave_vector_seq_id
CIF
A numeric code to identify each independent wave vector. These
codes define uniquely the reciprocal basis and, therefore,
force the order of the Miller indices assigned to
intensities, crystal faces etc.
data_cell_wave_vector_seq_id
    _name                        '_cell_wave_vector_seq_id'
    _category                    cell_wave_vector
    _type                        numb
#     _type_construct              [1-('_cell_modulation_dimension')]
    _list                        yes
    _definition
;              A numeric code to identify each independent wave vector. These
               codes define uniquely the reciprocal basis and, therefore,
               force the order of the Miller indices assigned to
               intensities, crystal faces etc.
;

_cell_wave_vector
CIF
Data names:
_cell_wave_vector_x
_cell_wave_vector_y
_cell_wave_vector_z
Independent modulation wave vector(s) with which the whole
diffraction pattern is indexed, expressed as fractions of the
three reciprocal basis vectors of the reference structure. In
the case of composites, the modulation wave vectors of each
subsystem are expressed in terms of the reciprocal basis of its
corresponding reference structure. Their number must match
_cell_modulation_dimension. In the case of composites described
in a single data block, the wave
vectors are expressed in the three-dimensional basis chosen as
reference in _cell_reciprocal_basis_description, which would
correspond to the subsystem (if any) whose W matrix is the
{(_cell_modulation_dimension + 3)*
(_cell_modulation_dimension + 3)} unit matrix. In this case,
the wave vectors used to describe the modulation of each
subsystem are referred to their own reciprocal basis via the W
matrices (for details see _cell_subsystem_matrix_W_ and
_atom_site_Fourier_wave_vector_).
data_cell_wave_vector_
    loop_ _name                  '_cell_wave_vector_x'
                                 '_cell_wave_vector_y'
                                 '_cell_wave_vector_z'
    _category                    cell_wave_vector
    _type                        numb
    _type_conditions             esd
    _list                        yes
    _list_reference              '_cell_wave_vector_seq_id'
    _enumeration_default         0.0
    _definition
;              Independent modulation wave vector(s) with which the whole
               diffraction pattern is indexed, expressed as fractions of the
               three reciprocal basis vectors of the reference structure. In
               the case of composites, the modulation wave vectors of each
               subsystem are expressed in terms of the reciprocal basis of its
               corresponding reference structure. Their number must match
               _cell_modulation_dimension. In the case of composites described
               in a single data block, the wave
               vectors are expressed in the three-dimensional basis chosen as
               reference in _cell_reciprocal_basis_description, which would
               correspond to the subsystem (if any) whose W matrix is the
               {(_cell_modulation_dimension + 3)*
               (_cell_modulation_dimension + 3)} unit matrix. In this case,
               the wave vectors used to describe the modulation of each
               subsystem are referred to their own reciprocal basis via the W
               matrices (for details see _cell_subsystem_matrix_W_ and
               _atom_site_Fourier_wave_vector_).
;

#######################
## CELL_WAVE_VECTORS ##
#######################

_CELL_WAVE_VECTORS_[MS]
CIF
Data items in the CELL_WAVE_VECTORS category record details
about the set of independent modulation wave vectors q~i~ and
their measurement. The diffraction vectors are indexed in
the form ha*+kb*+lc*+sum~i~ (m~i~q~i~). sum~i~ is taken
over all wave vectors. In this version of the dictionary, the
index i has been restricted to be less than 9.
Example:
_cell_wave_vectors_meas_details          'Determined from profiles along q'
data_cell_wave_vectors_[ms]
    _name                        '_cell_wave_vectors_[ms]'
    _category                    category_overview
    _type                        null
    loop_ _example
          _example_detail
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
;
     _cell_wave_vectors_meas_details          'Determined from profiles along q'
;
;
    Example 1 - example corresponding to the one-dimensional incommensurately
                modulated structure of K~2~SeO~4~.
;
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
      _definition
;              Data items in the CELL_WAVE_VECTORS category record details
               about the set of independent modulation wave vectors q~i~ and
               their measurement. The diffraction vectors are indexed in
               the form ha*+kb*+lc*+sum~i~ (m~i~q~i~). sum~i~ is taken
               over all wave vectors. In this version of the dictionary, the
               index i has been restricted to be less than 9.
;

_cell_wave_vectors_meas_details
CIF
Details about the method used to determine the independent
modulation wave vector(s).
data_cell_wave_vectors_meas_details
    _name                        '_cell_wave_vectors_meas_details'
    _category                    cell_wave_vectors
    _type                        char
    _definition
;              Details about the method used to determine the independent
               modulation wave vector(s).
;

_cell_wave_vectors_pressure
CIF
Data names:
_cell_wave_vectors_pressure_max
_cell_wave_vectors_pressure_min
The maximum and minimum values of the pressure in kilopascals
defining the interval within which the modulation wave vector(s)
were measured.
data_cell_wave_vectors_pressure_
    loop_ _name                  '_cell_wave_vectors_pressure_max'
                                 '_cell_wave_vectors_pressure_min'
    _category                    cell_wave_vectors
    _type                        numb
    _type_conditions             esd
    _units                       kPa
    _units_detail                'Kilopascals'
    _enumeration_range           0.0:
    _definition
;              The maximum and minimum values of the pressure in kilopascals
               defining the interval within which the modulation wave vector(s)
               were measured.
;

_cell_wave_vectors_temp
CIF
Data names:
_cell_wave_vectors_temp_max
_cell_wave_vectors_temp_min
The maximum and minimum values of the temperature in kelvins
defining the interval within which the modulation wave vector(s)
were measured.
data_cell_wave_vectors_temp_
    loop_ _name                  '_cell_wave_vectors_temp_max'
                                 '_cell_wave_vectors_temp_min'
    _category                    cell_wave_vectors
    _type                        numb
    _type_conditions             esd
    _units                       K
    _units_detail                'Kelvins'
    _enumeration_range           0.0:
    _definition
;              The maximum and minimum values of the temperature in kelvins
               defining the interval within which the modulation wave vector(s)
               were measured.
;

_cell_wave_vectors_variation
CIF
Details concerning the behaviour (and its experimental
detection) of the wave vector(s) with temperature and/or
pressure within the ranges specified by
_cell_wave_vectors_pressure_max, _cell_wave_vectors_pressure_min,
_cell_wave_vectors_temp_max and _cell_wave_vectors_temp_min.
data_cell_wave_vectors_variation
    _name                        '_cell_wave_vectors_variation'
    _category                    cell_wave_vectors
    _type                        char
    _definition
;              Details concerning the behaviour (and its experimental
               detection) of the wave vector(s) with temperature and/or
               pressure within the ranges specified by
               _cell_wave_vectors_pressure_max, _cell_wave_vectors_pressure_min,
               _cell_wave_vectors_temp_max and _cell_wave_vectors_temp_min.
;

##################
## DIFFRN_REFLN ##
##################
_DIFFRN_REFLN_[MS]
CIF
Data items in the DIFFRN_REFLN category record details about
the intensities measured in the diffraction experiment. The
DIFFRN_REFLN data items refer to individual intensity
measurements and must be included in looped lists. (The
DIFFRN_REFLNS data items specify the parameters that apply
to all intensity measurements. The DIFFRN_REFLNS data items
are not looped.) Data items in this category are extensions
of the core CIF dictionary definitions to the indexing of
diffraction intensities by higher-dimensional components.
data_diffrn_refln[ms]
    _name                        '_diffrn_refln_[ms]'
    _category                    category_overview
    _type                        null
      _definition
;              Data items in the DIFFRN_REFLN category record details about
               the intensities measured in the diffraction experiment. The
               DIFFRN_REFLN data items refer to individual intensity
               measurements and must be included in looped lists. (The
               DIFFRN_REFLNS data items specify the parameters that apply
               to all intensity measurements. The DIFFRN_REFLNS data items
               are not looped.) Data items in this category are extensions
               of the core CIF dictionary definitions to the indexing of
               diffraction intensities by higher-dimensional components.
;

_diffrn_refln_index_m
CIF
Data names:
_diffrn_refln_index_m_1
_diffrn_refln_index_m_2
_diffrn_refln_index_m_3
_diffrn_refln_index_m_4
_diffrn_refln_index_m_5
_diffrn_refln_index_m_6
_diffrn_refln_index_m_7
_diffrn_refln_index_m_8
Additional Miller indices needed to write the reciprocal vector
of a certain reflection in the basis described in
_cell_reciprocal_basis_description. Following the usual
convention, such a vector would be expressed as
         H=h*a*+k*b*+l*c*+m1*q(1)+...+m8*q(8),
where h,k,l are the usual _diffrn_refln_index_, and q(1)...q(8)
represent the independent wave vectors given by
_cell_wave_vector_ and identified by _cell_wave_vector_seq_id.
Therefore, the total number of indices of a given reflection must
match (_cell_modulation_dimension + 3) and the order of the
additional indices must be consistent with the codes given in
_cell_wave_vector_seq_id . These indices need not match
_refln_index_m_ values if a transformation of the original
measured cell has occurred.
data_diffrn_refln_index_m_
    loop_ _name                  '_diffrn_refln_index_m_1'
                                 '_diffrn_refln_index_m_2'
                                 '_diffrn_refln_index_m_3'
                                 '_diffrn_refln_index_m_4'
                                 '_diffrn_refln_index_m_5'
                                 '_diffrn_refln_index_m_6'
                                 '_diffrn_refln_index_m_7'
                                 '_diffrn_refln_index_m_8'
    _category                    diffrn_refln
    _type                        numb
#     _type_construct              '( *-?[0-9]+)'
    _list                        yes
loop_ _list_reference        '_diffrn_refln_index_h'
                                 '_diffrn_refln_index_k'
                                 '_diffrn_refln_index_l'
    _definition
;              Additional Miller indices needed to write the reciprocal vector
               of a certain reflection in the basis described in
               _cell_reciprocal_basis_description. Following the usual
               convention, such a vector would be expressed as
                        H=h*a*+k*b*+l*c*+m1*q(1)+...+m8*q(8),
               where h,k,l are the usual _diffrn_refln_index_, and q(1)...q(8)
               represent the independent wave vectors given by
               _cell_wave_vector_ and identified by _cell_wave_vector_seq_id.
               Therefore, the total number of indices of a given reflection must
               match (_cell_modulation_dimension + 3) and the order of the
               additional indices must be consistent with the codes given in
               _cell_wave_vector_seq_id . These indices need not match
               _refln_index_m_ values if a transformation of the original
               measured cell has occurred.
;

###################
## DIFFRN_REFLNS ##
###################
_DIFFRN_REFLNS_[MS]
CIF
Data items in the DIFFRN_REFLNS category record details about
the set of intensities measured in the diffraction experiment.
The DIFFRN_REFLNS data items specify the parameters that apply to
all intensity measurements. The DIFFRN_REFLNS data items are
not looped. (The DIFFRN_REFLN data items refer to individual
intensity measurements and must be included in looped lists.)
Data items in this category extend the core CIF dictionary
definitions providing independent checks on the range of values
recorded for each of the additional Miller indices given in
the DIFFRN_REFLN category.
data_diffrn_reflns[ms]
    _name                        '_diffrn_reflns_[ms]'
    _category                    category_overview
    _type                        null
      _definition
;              Data items in the DIFFRN_REFLNS category record details about
               the set of intensities measured in the diffraction experiment.
               The DIFFRN_REFLNS data items specify the parameters that apply to
               all intensity measurements. The DIFFRN_REFLNS data items are
               not looped. (The DIFFRN_REFLN data items refer to individual
               intensity measurements and must be included in looped lists.)
               Data items in this category extend the core CIF dictionary
               definitions providing independent checks on the range of values
               recorded for each of the additional Miller indices given in
               the DIFFRN_REFLN category.
;

_diffrn_reflns_limit_index_m
CIF
Data names:
_diffrn_reflns_limit_index_m_1_max
_diffrn_reflns_limit_index_m_1_min
_diffrn_reflns_limit_index_m_2_max
_diffrn_reflns_limit_index_m_2_min
_diffrn_reflns_limit_index_m_3_max
_diffrn_reflns_limit_index_m_3_min
_diffrn_reflns_limit_index_m_4_max
_diffrn_reflns_limit_index_m_4_min
_diffrn_reflns_limit_index_m_5_max
_diffrn_reflns_limit_index_m_5_min
_diffrn_reflns_limit_index_m_6_max
_diffrn_reflns_limit_index_m_6_min
_diffrn_reflns_limit_index_m_7_max
_diffrn_reflns_limit_index_m_7_min
_diffrn_reflns_limit_index_m_8_max
_diffrn_reflns_limit_index_m_8_min
Maximum and minimum values of the additional Miller indices
appearing in _diffrn_refln_index_m_. The number of ranges must
match _cell_modulation_dimension. The order of the additional
indices must be consistent with the codes given in
_cell_wave_vector_seq_id.
data_diffrn_reflns_limit_index_m_
    loop_ _name                  '_diffrn_reflns_limit_index_m_1_max'
                                 '_diffrn_reflns_limit_index_m_1_min'
                                 '_diffrn_reflns_limit_index_m_2_max'
                                 '_diffrn_reflns_limit_index_m_2_min'
                                 '_diffrn_reflns_limit_index_m_3_max'
                                 '_diffrn_reflns_limit_index_m_3_min'
                                 '_diffrn_reflns_limit_index_m_4_max'
                                 '_diffrn_reflns_limit_index_m_4_min'
                                 '_diffrn_reflns_limit_index_m_5_max'
                                 '_diffrn_reflns_limit_index_m_5_min'
                                 '_diffrn_reflns_limit_index_m_6_max'
                                 '_diffrn_reflns_limit_index_m_6_min'
                                 '_diffrn_reflns_limit_index_m_7_max'
                                 '_diffrn_reflns_limit_index_m_7_min'
                                 '_diffrn_reflns_limit_index_m_8_max'
                                 '_diffrn_reflns_limit_index_m_8_min'
    _category                    diffrn_reflns
    _type                        numb
#     _type_construct              '( *-?[0-9]+)'
    _definition
;              Maximum and minimum values of the additional Miller indices
               appearing in _diffrn_refln_index_m_. The number of ranges must
               match _cell_modulation_dimension. The order of the additional
               indices must be consistent with the codes given in
               _cell_wave_vector_seq_id.
;

_diffrn_reflns_satellite_order_max
CIF
Maximum order of observed satellites.
data_diffrn_reflns_satellite_order_max
    _name                        '_diffrn_reflns_satellite_order_max'
    _category                    diffrn_reflns
    _type                        numb
    _definition
;              Maximum order of observed satellites.
;

###########################
## DIFFRN_STANDARD_REFLN ##
###########################
_DIFFRN_STANDARD_REFLN_[MS]
CIF
Data items in the DIFFRN_STANDARD_REFLN category record
details about the reflections treated as standards during the
measurement of diffraction intensities. Note that these are the
individual standard reflections, not the results of the analysis
of the standard reflections. Data items in this category are
extensions of  the core CIF dictionary definitions
to the indexing of standard reflections by
higher-dimensional components.
data_diffrn_standard_refln[ms]
    _name                        '_diffrn_standard_refln_[ms]'
    _category                    category_overview
    _type                        null
      _definition
;              Data items in the DIFFRN_STANDARD_REFLN category record
               details about the reflections treated as standards during the
               measurement of diffraction intensities. Note that these are the
               individual standard reflections, not the results of the analysis
               of the standard reflections. Data items in this category are
               extensions of  the core CIF dictionary definitions
               to the indexing of standard reflections by
               higher-dimensional components.
;

_diffrn_standard_refln_index_m
CIF
Data names:
_diffrn_standard_refln_index_m_1
_diffrn_standard_refln_index_m_2
_diffrn_standard_refln_index_m_3
_diffrn_standard_refln_index_m_4
_diffrn_standard_refln_index_m_5
_diffrn_standard_refln_index_m_6
_diffrn_standard_refln_index_m_7
_diffrn_standard_refln_index_m_8
Additional Miller indices needed to write the reciprocal vectors
of the standard intensities used in the diffraction measurement
process, in the basis described in
_cell_reciprocal_basis_description. The total number of indices
of a given standard reflection must match
(_cell_modulation_dimension + 3) and the order of the
additional indices must be consistent with the codes given in
_cell_wave_vector_seq_id.
data_diffrn_standard_refln_index_m_
    loop_ _name                  '_diffrn_standard_refln_index_m_1'
                                 '_diffrn_standard_refln_index_m_2'
                                 '_diffrn_standard_refln_index_m_3'
                                 '_diffrn_standard_refln_index_m_4'
                                 '_diffrn_standard_refln_index_m_5'
                                 '_diffrn_standard_refln_index_m_6'
                                 '_diffrn_standard_refln_index_m_7'
                                 '_diffrn_standard_refln_index_m_8'
    _category                    diffrn_standard_refln
    _type                        numb
#     _type_construct              '( *-?[0-9]+)'
    _list                        yes
    loop_ _list_reference        '_diffrn_standard_refln_index_h'
                                 '_diffrn_standard_refln_index_k'
                                 '_diffrn_standard_refln_index_l'
    _definition
;              Additional Miller indices needed to write the reciprocal vectors
               of the standard intensities used in the diffraction measurement
               process, in the basis described in
               _cell_reciprocal_basis_description. The total number of indices
               of a given standard reflection must match
               (_cell_modulation_dimension + 3) and the order of the
               additional indices must be consistent with the codes given in
               _cell_wave_vector_seq_id.
;

########################
## EXPTL_CRYSTAL_FACE ##
########################
_EXPTL_CRYSTAL_[MS]
CIF
Data items in the EXPTL_CRYSTAL category record
details about experimental measurements on the crystal or
crystals used, such as shape, size and density. The new
data item added to this category specifies whether the structure
is crystalline, modulated or composite.
data_exptl_crystal[ms]
    _name                        '_exptl_crystal_[ms]'
    _category                    category_overview
    _type                        null
      _definition
;              Data items in the EXPTL_CRYSTAL category record
               details about experimental measurements on the crystal or
               crystals used, such as shape, size and density. The new
               data item added to this category specifies whether the structure
               is crystalline, modulated or composite.
;

_exptl_crystal_type_of_structure
CIF
The type of structure. This is used to check the consistency of a
CIF: the data blocks that are expected and/or certain characteristic
parameters depend on whether the material is classified as crystalline
(periodic in three dimensions), modulated or composite.
data_exptl_crystal_type_of_structure
    _name                        '_exptl_crystal_type_of_structure'
    _category                    exptl_crystal
    _type                        char
    loop_ _enumeration
          _enumeration_detail    cryst    'crystalline structure'
                                 mod      'modulated structure'
                                 comp     'composite (misfit) structure'
    _enumeration_default         'cryst'
    _definition
;       The type of structure. This is used to check the consistency of a
        CIF: the data blocks that are expected and/or certain characteristic
        parameters depend on whether the material is classified as crystalline
        (periodic in three dimensions), modulated or composite.
;

################
## GEOM_ANGLE ##
################
_EXPTL_CRYSTAL_FACE_[MS]
CIF
Data items in the EXPTL_CRYSTAL_FACE category record
details of the crystal faces. Data items in this category are
extensions of the core CIF dictionary definitions to the
indexing of crystal faces by higher-dimensional components.
data_exptl_crystal_face[ms]
    _name                        '_exptl_crystal_face_[ms]'
    _category                    category_overview
    _type                        null
      _definition
;              Data items in the EXPTL_CRYSTAL_FACE category record
               details of the crystal faces. Data items in this category are
               extensions of the core CIF dictionary definitions to the
               indexing of crystal faces by higher-dimensional components.
;

_exptl_crystal_face_index_m
CIF
Data names:
_exptl_crystal_face_index_m_1
_exptl_crystal_face_index_m_2
_exptl_crystal_face_index_m_3
_exptl_crystal_face_index_m_4
_exptl_crystal_face_index_m_5
_exptl_crystal_face_index_m_6
_exptl_crystal_face_index_m_7
_exptl_crystal_face_index_m_8
Additional Miller indices of the crystal face associated with the
value _exptl_crystal_face_perp_dist when the face is indexed
using a multidimensional scheme. The total number of indices must
match (_cell_modulation_dimension + 3). The order of the indices
must be consistent with the codes given in
_cell_wave_vector_seq_id.
data_exptl_crystal_face_index_m_
    loop_ _name                  '_exptl_crystal_face_index_m_1'
                                 '_exptl_crystal_face_index_m_2'
                                 '_exptl_crystal_face_index_m_3'
                                 '_exptl_crystal_face_index_m_4'
                                 '_exptl_crystal_face_index_m_5'
                                 '_exptl_crystal_face_index_m_6'
                                 '_exptl_crystal_face_index_m_7'
                                 '_exptl_crystal_face_index_m_8'
    _category                    exptl_crystal_face
    _type                        numb
#     _type_construct                '( *-?[0-9]+)'
    _list                        yes
       loop_ _list_reference        '_exptl_crystal_face_index_h'
                                 '_exptl_crystal_face_index_k'
                                 '_exptl_crystal_face_index_l'
    _definition
;              Additional Miller indices of the crystal face associated with the
               value _exptl_crystal_face_perp_dist when the face is indexed
               using a multidimensional scheme. The total number of indices must
               match (_cell_modulation_dimension + 3). The order of the indices
               must be consistent with the codes given in
               _cell_wave_vector_seq_id.
;

###################
## EXPTL_CRYSTAL ##
###################
_GEOM_ANGLE_[MS]
CIF
Data items in the GEOM_ANGLE category record
details about the bond angles, as calculated from the
ATOM, CELL and SYMMETRY data. These extensions
to the core CIF dictionary definitions record the maximum,
minimum and average values of angles and extend the
symmetry-operation code used in angle listings to the
higher-dimensional superspace form.
data_geom_angle[ms]
    _name                        '_geom_angle_[ms]'
    _category                    category_overview
    _type                        null
      _definition
;              Data items in the GEOM_ANGLE category record
               details about the bond angles, as calculated from the
               ATOM, CELL and SYMMETRY data. These extensions
               to the core CIF dictionary definitions record the maximum,
               minimum and average values of angles and extend the
               symmetry-operation code used in angle listings to the
               higher-dimensional superspace form.
;

_geom_angle
CIF
Data names:
_geom_angle_max
_geom_angle_min
_geom_angle_av
Maximum, minimum and average angles in degrees bounded by
_geom_angle_atom_site_label_1, *_2, and *_3. The site at *_2
is at the apex of the angle.
data_geom_angle_
    loop_ _name                  '_geom_angle_max'
                                 '_geom_angle_min'
                                 '_geom_angle_av'
    _category                    geom_angle
    _type                        numb
    _type_conditions             esd
    _list                        yes
    _list_reference              '_geom_angle_atom_site_label_'
    _units                       deg
    _units_detail               'Degrees'
    _definition
;              Maximum, minimum and average angles in degrees bounded by
               _geom_angle_atom_site_label_1, *_2, and *_3. The site at *_2
               is at the apex of the angle.
;

_geom_angle_site_ssg_symmetry
CIF
Data names:
_geom_angle_site_ssg_symmetry_1
_geom_angle_site_ssg_symmetry_2
_geom_angle_site_ssg_symmetry_3
The symmetry code of each atom site as the symmetry operation
number 'n' and the higher-dimensional translation 'm1...mp'.
These numbers are combined to form the code 'n m1...mp' or
n_m1...mp. The character string n_m1...mp is composed as follows:
'n' refers to the symmetry operation that is applied to the
superspace coordinates. It must match a number given in
_space_group_symop_ssg_id. 'm1...mp' refer to the translations
that are subsequently applied to the symmetry-transformed
coordinates to generate the atom used in calculating the angle.
These translations (t1,...tp) are related to (m1...mp) by the
relations m1=5+t1, ..., mp=5+tp. By adding 5 to the translations,
the use of negative numbers is avoided. The number 'p' must agree
with (_cell_modulation_dimension + 3). If there are no cell
translations, the translation number may be omitted. If no
symmetry operations or translations are applicable, then a single
full stop '.' is used.
Examples:
4
7_6455
data_geom_angle_site_ssg_symmetry_
    loop_ _name                  '_geom_angle_site_ssg_symmetry_1'
                                 '_geom_angle_site_ssg_symmetry_2'
                                 '_geom_angle_site_ssg_symmetry_3'
    _category                    geom_angle
    _type                        char
#     _type_construct
# ;                               [\.([1-\
#                                 ('_space_group_ssg_symops_number')]\
#                                 ([ _]([0-9])\
#                                 {('_cell_reciprocal_basis_vect_number')})?)]
# ;
    _list                        yes
    _list_reference              '_geom_angle_atom_site_label_'
    loop_ _example
          _example_detail        .      'no symmetry or translation to site'
                                 4      '4th symmetry operation applied'
                              7_6455 '7th symmetry position; +a on x, -b on y'
    _definition
;              The symmetry code of each atom site as the symmetry operation
               number 'n' and the higher-dimensional translation 'm1...mp'.
               These numbers are combined to form the code 'n m1...mp' or
               n_m1...mp. The character string n_m1...mp is composed as follows:
               'n' refers to the symmetry operation that is applied to the
               superspace coordinates. It must match a number given in
               _space_group_symop_ssg_id. 'm1...mp' refer to the translations
               that are subsequently applied to the symmetry-transformed
               coordinates to generate the atom used in calculating the angle.
               These translations (t1,...tp) are related to (m1...mp) by the
               relations m1=5+t1, ..., mp=5+tp. By adding 5 to the translations,
               the use of negative numbers is avoided. The number 'p' must agree
               with (_cell_modulation_dimension + 3). If there are no cell
               translations, the translation number may be omitted. If no
               symmetry operations or translations are applicable, then a single
               full stop '.' is used.
;

###############
## GEOM_BOND ##
###############
_GEOM_BOND_[MS]
CIF
Data items in the GEOM_BOND category record
details about bonds, as calculated from the
ATOM, CELL and SYMMETRY data. These extensions
to the core CIF dictionary definitions record the maximum,
minimum and average lengths of bonds and extend the
symmetry-operation code used in bond listings to the
higher-dimensional superspace form.
data_geom_bond[ms]
    _name                        '_geom_bond_[ms]'
    _category                    category_overview
    _type                        null
      _definition
;              Data items in the GEOM_BOND category record
               details about bonds, as calculated from the
               ATOM, CELL and SYMMETRY data. These extensions
               to the core CIF dictionary definitions record the maximum,
               minimum and average lengths of bonds and extend the
               symmetry-operation code used in bond listings to the
               higher-dimensional superspace form.
;

_geom_bond_distance
CIF
Data names:
_geom_bond_distance_max
_geom_bond_distance_min
_geom_bond_distance_av
Maximum, minimum and average values of the intramolecular bond
distance in angstroms.
data_geom_bond_distance_
    loop_ _name                  '_geom_bond_distance_max'
                                 '_geom_bond_distance_min'
                                 '_geom_bond_distance_av'
    _category                    geom_bond
    _type                        numb
    _type_conditions             esd
    _list                        yes
    _list_reference              '_geom_bond_atom_site_label_'
    _enumeration_range           0.0:
    _units                       A
    _units_detail                'Angstroms'
    _definition
;              Maximum, minimum and average values of the intramolecular bond
               distance in angstroms.
;

_geom_bond_site_ssg_symmetry
CIF
Data names:
_geom_bond_site_ssg_symmetry_1
_geom_bond_site_ssg_symmetry_2
The symmetry code of each atom site as the symmetry operation
number 'n' and the higher-dimensional translation 'm1...mp'.
These numbers are combined to form the code 'n m1...mp' or
n_m1...mp. The character string n_m1...mp is composed as follows:
'n' refers to the symmetry operation that is applied to the
superspace coordinates. It must match a number given in
_space_group_symop_ssg_id. 'm1...mp' refer to the translations
that are subsequently applied to the symmetry-transformed
coordinates to generate the atom used in calculating the bond.
These translations (t1,...tp) are related to (m1...mp) by the
relations m1=5+t1, ..., mp=5+tp. By adding 5 to the translations,
the use of negative numbers is avoided. The number 'p' must agree
with (_cell_modulation_dimension + 3). If there are no cell
translations, the translation number may be omitted. If no
symmetry operations or translations are applicable then a single
full stop '.' is used.
Examples:
4
7_6455
data_geom_bond_site_ssg_symmetry_
    loop_ _name                  '_geom_bond_site_ssg_symmetry_1'
                                 '_geom_bond_site_ssg_symmetry_2'
    _category                    geom_bond
    _type                        char
#     _type_construct
# ;                               [\.([1-\
#                                 ('_space_group_ssg_symops_number')]\
#                                 ([ _]([0-9])\
#                                 {('_cell_reciprocal_basis_vect_number')})?)]
# ;
    _list                        yes
    _list_reference              '_geom_bond_atom_site_label_'
    loop_ _example
          _example_detail        .      'no symmetry or translation to site'
                                 4      '4th symmetry operation applied'
                             7_6455 '7th symmetry position; +a on x, -b on y'
    _definition
;              The symmetry code of each atom site as the symmetry operation
               number 'n' and the higher-dimensional translation 'm1...mp'.
               These numbers are combined to form the code 'n m1...mp' or
               n_m1...mp. The character string n_m1...mp is composed as follows:
               'n' refers to the symmetry operation that is applied to the
               superspace coordinates. It must match a number given in
               _space_group_symop_ssg_id. 'm1...mp' refer to the translations
               that are subsequently applied to the symmetry-transformed
               coordinates to generate the atom used in calculating the bond.
               These translations (t1,...tp) are related to (m1...mp) by the
               relations m1=5+t1, ..., mp=5+tp. By adding 5 to the translations,
               the use of negative numbers is avoided. The number 'p' must agree
               with (_cell_modulation_dimension + 3). If there are no cell
               translations, the translation number may be omitted. If no
               symmetry operations or translations are applicable then a single
               full stop '.' is used.
;

##################
## GEOM_CONTACT ##
##################
_GEOM_CONTACT_[MS]
CIF
Data items in the GEOM_CONTACT category record
details about interatomic contacts, as calculated from the
ATOM, CELL and SYMMETRY data. These extensions
to the core CIF dictionary definitions record the maximum,
minimum and average values of contact distances and extend the
symmetry-operation code used in contact-distance listings to the
higher-dimensional superspace form.
data_geom_contact[ms]
    _name                        '_geom_contact_[ms]'
    _category                    category_overview
    _type                        null
      _definition
;              Data items in the GEOM_CONTACT category record
               details about interatomic contacts, as calculated from the
               ATOM, CELL and SYMMETRY data. These extensions
               to the core CIF dictionary definitions record the maximum,
               minimum and average values of contact distances and extend the
               symmetry-operation code used in contact-distance listings to the
               higher-dimensional superspace form.
;

_geom_contact_distance
CIF
Data names:
_geom_contact_distance_max
_geom_contact_distance_min
_geom_contact_distance_av
Maximum, minimum and average values of the interatomic contact
distance in angstroms.
data_geom_contact_distance_
    loop_ _name                  '_geom_contact_distance_max'
                                 '_geom_contact_distance_min'
                                 '_geom_contact_distance_av'
    _category                    geom_contact
    _type                        numb
    _type_conditions             esd
    _list                        yes
    _list_reference              '_geom_contact_atom_site_label_'
    _enumeration_range           0.0:
    _units                       A
    _units_detail                'Angstroms'
    _definition
;              Maximum, minimum and average values of the interatomic contact
               distance in angstroms.
;

_geom_contact_site_ssg_symmetry
CIF
Data names:
_geom_contact_site_ssg_symmetry_1
_geom_contact_site_ssg_symmetry_2
The symmetry code of each atom site as the symmetry operation
number 'n' and the higher-dimensional translation 'm1...mp'.
These numbers are combined to form the code 'n m1...mp' or
n_m1...mp. The character string n_m1...mp is composed as follows:
'n' refers to the symmetry operation that is applied to the
superspace coordinates. It must match a number given in
_space_group_symop_ssg_id. 'm1...mp' refer to the translations
that are subsequently applied to the symmetry-transformed
coordinates to generate the atom used in calculating the contact.
These translations (t1,...tp) are related to (m1...mp) by the
relations m1=5+t1, ..., mp=5+tp. By adding 5 to the translations,
the use of negative numbers is avoided. The number 'p' must agree
with (_cell_modulation_dimension + 3). If there are no cell
translations, the translation number may be omitted. If no
symmetry operations or translations are applicable, then a single
full stop '.' is used.
Examples:
4
7_6455
data_geom_contact_site_ssg_symmetry_
    loop_ _name                  '_geom_contact_site_ssg_symmetry_1'
                                 '_geom_contact_site_ssg_symmetry_2'
    _category                    geom_contact
    _type                        char
#     _type_construct
# ;                               [\.([1-\
#                                 ('_space_group_ssg_symops_number')]\
#                                 ([ _]([0-9])\
#                                 {('_cell_reciprocal_basis_vect_number')})?)]
# ;
    _list                        yes
    _list_reference              '_geom_contact_atom_site_label_'
    loop_ _example
          _example_detail        .      'no symmetry or translation to site'
                                 4      '4th symmetry operation applied'
                              7_6455 '7th symmetry position; +a on x, -b on y'
    _definition
;              The symmetry code of each atom site as the symmetry operation
               number 'n' and the higher-dimensional translation 'm1...mp'.
               These numbers are combined to form the code 'n m1...mp' or
               n_m1...mp. The character string n_m1...mp is composed as follows:
               'n' refers to the symmetry operation that is applied to the
               superspace coordinates. It must match a number given in
               _space_group_symop_ssg_id. 'm1...mp' refer to the translations
               that are subsequently applied to the symmetry-transformed
               coordinates to generate the atom used in calculating the contact.
               These translations (t1,...tp) are related to (m1...mp) by the
               relations m1=5+t1, ..., mp=5+tp. By adding 5 to the translations,
               the use of negative numbers is avoided. The number 'p' must agree
               with (_cell_modulation_dimension + 3). If there are no cell
               translations, the translation number may be omitted. If no
               symmetry operations or translations are applicable, then a single
               full stop '.' is used.
;

##################
## GEOM_TORSION ##
##################
_GEOM_TORSION_[MS]
CIF
Data items in the GEOM_TORSION category record
details about torsion angles, as calculated from the
ATOM, CELL and SYMMETRY data. These extensions
to the core CIF dictionary definitions record the maximum,
minimum and average values of torsion angles and extend the
symmetry-operation code used in torsion-angle listings to the
higher-dimensional superspace form.
data_geom_torsion[ms]
    _name                        '_geom_torsion_[ms]'
    _category                    category_overview
    _type                        null
      _definition
;              Data items in the GEOM_TORSION category record
               details about torsion angles, as calculated from the
               ATOM, CELL and SYMMETRY data. These extensions
               to the core CIF dictionary definitions record the maximum,
               minimum and average values of torsion angles and extend the
               symmetry-operation code used in torsion-angle listings to the
               higher-dimensional superspace form.
;

_geom_torsion
CIF
Data names:
_geom_torsion_max
_geom_torsion_min
_geom_torsion_av
Maximum, minimum and average torsion angles in degrees bounded
by the four atom sites identified by the
_geom_torsion_atom_site_label_ codes. These must match labels
specified as _atom_site_label in the atom list. The torsion-
angle definition should be that of Klyne and Prelog (1960).
Ref: Klyne, W. & Prelog, V. (1960). Experientia, 16, 521-523.
data_geom_torsion_
    loop_ _name                  '_geom_torsion_max'
                                 '_geom_torsion_min'
                                 '_geom_torsion_av'
    _category                    geom_torsion
    _type                        numb
    _type_conditions             esd
    _list                        yes
    _list_reference              '_geom_torsion_atom_site_label_'
    _units                       deg
    _units_detail                'Degrees'
    _definition
;              Maximum, minimum and average torsion angles in degrees bounded
               by the four atom sites identified by the
               _geom_torsion_atom_site_label_ codes. These must match labels
               specified as _atom_site_label in the atom list. The torsion-
               angle definition should be that of Klyne and Prelog (1960).

               Ref: Klyne, W. & Prelog, V. (1960). Experientia, 16, 521-523.
;

_geom_torsion_site_ssg_symmetry
CIF
Data names:
_geom_torsion_site_ssg_symmetry_1
_geom_torsion_site_ssg_symmetry_2
_geom_torsion_site_ssg_symmetry_3
_geom_torsion_site_ssg_symmetry_4
The symmetry code of each atom site as the symmetry operation
number 'n' and the higher-dimensional translation 'm1...mp'.
These numbers are combined to form the code 'n m1...mp' or
n_m1...mp. The character string n_m1...mp is composed as follows:
'n' refers to the symmetry operation that is applied to the
superspace coordinates. It must match a number given in
_space_group_symop_ssg_id. 'm1...mp' refer to the translations
that are subsequently applied to the symmetry-transformed
coordinates to generate the atom used in calculating the angle.
These translations (t1,...tp) are related to (m1...mp) by the
relations m1=5+t1, ..., mp=5+tp. By adding 5 to the
translations, the use of negative numbers is avoided. The number
'p' must agree with (_cell_modulation_dimension + 3). If there
are no cell translations, the translation number may be omitted.
If no symmetry operations or translations are applicable,
then a single full stop '.' is used.
Examples:
4
7_6455
data_geom_torsion_site_ssg_symmetry_
    loop_ _name                  '_geom_torsion_site_ssg_symmetry_1'
                                 '_geom_torsion_site_ssg_symmetry_2'
                                 '_geom_torsion_site_ssg_symmetry_3'
                                 '_geom_torsion_site_ssg_symmetry_4'
    _category                    geom_torsion
    _type                        char
#     _type_construct
# ;                               [\.([1-\
#                                 ('_space_group_ssg_symops_number')]\
#                                 ([ _]([0-9])\
#                                 {('_cell_reciprocal_basis_vect_number')})?)]
# ;
    _list                        yes
    _list_reference              '_geom_torsion_atom_site_label_'
    loop_ _example
          _example_detail        .      'no symmetry or translation to site'
                                 4      '4th symmetry operation applied'
                            7_6455 '7th symmetry position; +a on x, -b on y'
    _definition
;              The symmetry code of each atom site as the symmetry operation
               number 'n' and the higher-dimensional translation 'm1...mp'.
               These numbers are combined to form the code 'n m1...mp' or
               n_m1...mp. The character string n_m1...mp is composed as follows:
               'n' refers to the symmetry operation that is applied to the
               superspace coordinates. It must match a number given in
               _space_group_symop_ssg_id. 'm1...mp' refer to the translations
               that are subsequently applied to the symmetry-transformed
               coordinates to generate the atom used in calculating the angle.
               These translations (t1,...tp) are related to (m1...mp) by the
               relations m1=5+t1, ..., mp=5+tp. By adding 5 to the
               translations, the use of negative numbers is avoided. The number
               'p' must agree with (_cell_modulation_dimension + 3). If there
               are no cell translations, the translation number may be omitted.
               If no symmetry operations or translations are applicable,
               then a single full stop '.' is used.
;

############
## REFINE ##
############
_REFINE_[MS]
CIF
Data items in the REFINE category record
details about the structure refinement parameters. The
new items in this category extend those of the core CIF
dictionary and are specific to the refinement of
modulated structures.
data_refine[ms]
    _name                        '_refine_[ms]'
    _category                    category_overview
    _type                        null
      _definition
;              Data items in the REFINE category record
               details about the structure refinement parameters. The
               new items in this category extend those of the core CIF
               dictionary and are specific to the refinement of
               modulated structures.
;

_refine_ls_mod_func_description
CIF
Types of modulation present in the structural model and their
parameterization.
Examples:
Only displacive modulation. Fourier series.
Modulation of atom S(1) described by a non-standard
               linear sawtooth function
data_refine_ls_mod_func_description
    _name                        '_refine_ls_mod_func_description'
    _category                    refine
    _type                        char
    loop_ _example               'Only displacive modulation. Fourier series.'
;              Modulation of atom S(1) described by a non-standard
               linear sawtooth function
;
    _definition
;              Types of modulation present in the structural model and their
               parameterization.
;

_refine_ls_mod_hydrogen_treatment
CIF
Treatment of hydrogen-atom modulation parameters in the
refinement.
data_refine_ls_mod_hydrogen_treatment
    _name                        '_refine_ls_mod_hydrogen_treatment'
    _category                    refine
    _type                        char
    loop_ _enumeration
          _enumeration_detail
    'refA'     'refined H-atom displacive modulation parameters only'
'refxyzA' 'refined H-atom coordinates and displacive modulation parameters only'
    'refP'     'refined H-atom occupational modulation parameters only'
    'refUP'    'refined H-atom U and occupational modulation parameters only'
    'nomod'    'no modulation of H-atom parameters'
    _enumeration_default         'nomod'
    _definition
;              Treatment of hydrogen-atom modulation parameters in the
               refinement.
;

_refine_ls_mod_overall_phason_coeff
CIF
The phason coefficient used to calculate the overall phason
correction.
data_refine_ls_mod_overall_phason_coeff
    _name                        '_refine_ls_mod_overall_phason_coeff'
    _category                    refine
    _type                        numb
    _type_conditions             esd
    _enumeration_range           0.0:
    _enumeration_default         0.0
    _definition
;              The phason coefficient used to calculate the overall phason
               correction.
;

_refine_ls_mod_overall_phason_formula
CIF
The expression for the overall phason correction, if used.
data_refine_ls_mod_overall_phason_formula
    _name                        '_refine_ls_mod_overall_phason_formula'
    _category                    refine
    _type                        char
    loop_ _enumeration
          _enumeration_detail
               'Axe'     'Axe, J. D. (1980). Phys. Rev. B, 21, 4181-4190.'
               'Ovr'     'Overhauser, A. W. (1971). Phys. Rev. B, 3, 3173-3182.'
    _definition
;              The expression for the overall phason correction, if used.
;

###########
## REFLN ##
###########
_REFLN_[MS]
CIF
Data items in the REFLN category record details about the
reflections used to determine the ATOM_SITE data items.
The REFLN data items refer to individual reflections and
must be included in looped lists. The REFLNS data items
specify the parameters that apply to all reflections. The
REFLNS data items are not looped. Data items in this category
are extensions of the core CIF dictionary definitions to the
indexing of reflections used in the refinement by
higher-dimensional components.
data_refln[ms]
    _name                        '_refln_[ms]'
    _category                    category_overview
    _type                        null
      _definition
;              Data items in the REFLN category record details about the
               reflections used to determine the ATOM_SITE data items.
               The REFLN data items refer to individual reflections and
               must be included in looped lists. The REFLNS data items
               specify the parameters that apply to all reflections. The
               REFLNS data items are not looped. Data items in this category
               are extensions of the core CIF dictionary definitions to the
               indexing of reflections used in the refinement by
               higher-dimensional components.
;

_refln_index_m
CIF
Data names:
_refln_index_m_1
_refln_index_m_2
_refln_index_m_3
_refln_index_m_4
_refln_index_m_5
_refln_index_m_6
_refln_index_m_7
_refln_index_m_8
Additional Miller indices of a particular reflection in the basis
described in _cell_reciprocal_basis_description. The total number
of indices must match (_cell_modulation_dimension + 3). The
order of the additional indices must be consistent with the codes
given in _cell_wave_vector_seq_id.
data_refln_index_m_
    loop_ _name                  '_refln_index_m_1'
                                 '_refln_index_m_2'
                                 '_refln_index_m_3'
                                 '_refln_index_m_4'
                                 '_refln_index_m_5'
                                 '_refln_index_m_6'
                                 '_refln_index_m_7'
                                 '_refln_index_m_8'
    _category                    refln
    _type                        numb
#     _type_construct              '( *-?[0-9]+)'
    _list                        yes
    loop_ _list_reference        '_refln_index_h'
                                 '_refln_index_k'
                                 '_refln_index_l'
    _definition
;              Additional Miller indices of a particular reflection in the basis
               described in _cell_reciprocal_basis_description. The total number
               of indices must match (_cell_modulation_dimension + 3). The
               order of the additional indices must be consistent with the codes
               given in _cell_wave_vector_seq_id.
;

############
## REFLNS ##
############
_REFLNS_[MS]
CIF
Data items in the REFLNS category record details about the
reflections used to determine the ATOM_SITE data items.
The REFLN data items refer to individual reflections and
must be included in looped lists. The REFLNS data items
specify the parameters that apply to all reflections. The
REFLNS data items are not looped. Data items in this category
extend the core CIF dictionary definitions providing independent
checks on the range of values recorded for each of the
additional Miller indices given in the REFLN category.
data_reflns[ms]
    _name                        '_reflns_[ms]'
    _category                    category_overview
    _type                        null
      _definition
;              Data items in the REFLNS category record details about the
               reflections used to determine the ATOM_SITE data items.
               The REFLN data items refer to individual reflections and
               must be included in looped lists. The REFLNS data items
               specify the parameters that apply to all reflections. The
               REFLNS data items are not looped. Data items in this category
               extend the core CIF dictionary definitions providing independent
               checks on the range of values recorded for each of the
               additional Miller indices given in the REFLN category.
;

_reflns_limit_index_m
CIF
Data names:
_reflns_limit_index_m_1_max
_reflns_limit_index_m_1_min
_reflns_limit_index_m_2_max
_reflns_limit_index_m_2_min
_reflns_limit_index_m_3_max
_reflns_limit_index_m_3_min
_reflns_limit_index_m_4_max
_reflns_limit_index_m_4_min
_reflns_limit_index_m_5_max
_reflns_limit_index_m_5_min
_reflns_limit_index_m_6_max
_reflns_limit_index_m_6_min
_reflns_limit_index_m_7_max
_reflns_limit_index_m_7_min
_reflns_limit_index_m_8_max
_reflns_limit_index_m_8_min
Maximum and minimum values of the additional Miller indices
appearing in _refln_index_m_. The number of ranges must match
_cell_modulation_dimension. The order of the additional indices
must be consistent with the codes given in
_cell_wave_vector_seq_id. These need not be the same as
the _diffrn_reflns_limit_index_m_.
data_reflns_limit_index_m_
    loop_ _name                  '_reflns_limit_index_m_1_max'
                                 '_reflns_limit_index_m_1_min'
                                 '_reflns_limit_index_m_2_max'
                                 '_reflns_limit_index_m_2_min'
                                 '_reflns_limit_index_m_3_max'
                                 '_reflns_limit_index_m_3_min'
                                 '_reflns_limit_index_m_4_max'
                                 '_reflns_limit_index_m_4_min'
                                 '_reflns_limit_index_m_5_max'
                                 '_reflns_limit_index_m_5_min'
                                 '_reflns_limit_index_m_6_max'
                                 '_reflns_limit_index_m_6_min'
                                 '_reflns_limit_index_m_7_max'
                                 '_reflns_limit_index_m_7_min'
                                 '_reflns_limit_index_m_8_max'
                                 '_reflns_limit_index_m_8_min'
    _category                    reflns
    _type                        numb
#     _type_construct              '( *-?[0-9]+)'
    _definition
;              Maximum and minimum values of the additional Miller indices
               appearing in _refln_index_m_. The number of ranges must match
               _cell_modulation_dimension. The order of the additional indices
               must be consistent with the codes given in
               _cell_wave_vector_seq_id. These need not be the same as
               the _diffrn_reflns_limit_index_m_.
;

#################
## SPACE_GROUP ##
#################

_SPACE_GROUP_[MS]
CIF
The SPACE_GROUP category introduced in the symmetry CIF
dictionary (cif_sym.dic) is intended to replace the original
core SYMMETRY category. For modulated structures, superspace-
group descriptions may be included in the same category, but
include the _ssg_ flag to indicate their dimensionality of > 3.
data_space_group_[ms]
    _name                       '_space_group_[ms]'
    _category                   category_overview
    _type                       null
    _definition
;              The SPACE_GROUP category introduced in the symmetry CIF
               dictionary (cif_sym.dic) is intended to replace the original
               core SYMMETRY category. For modulated structures, superspace-
               group descriptions may be included in the same category, but
               include the _ssg_ flag to indicate their dimensionality of > 3.
;

_space_group_ssg_IT_number
CIF
Superspace-group number from International Tables for
Crystallography, Vol. C (2004). Valid only for one-dimensional
modulated structures.
Ref: International Tables for Crystallography (2004). Vol. C,
     Chapter 9.8. Dordrecht: Kluwer Academic Publishers.
data_space_group_ssg_IT_number
    _name                        '_space_group_ssg_IT_number'
    _category                    space_group
    _type                        numb
    _enumeration_range           1.1:
    _definition
;              Superspace-group number from International Tables for
               Crystallography, Vol. C (2004). Valid only for one-dimensional
               modulated structures.

               Ref: International Tables for Crystallography (2004). Vol. C,
                    Chapter 9.8. Dordrecht: Kluwer Academic Publishers.
;

_space_group_ssg_name
CIF
Superspace-group symbol conforming to an alternative definition
from that given in _space_group_ssg_name_IT and
_space_group_ssg_name_WJJ for one-dimensional modulated
structures or to the superspace-group name for higher dimensions.
When necessary, indicate the origin and the setting. Use a colon
':' as a separator between the different parts of the
superspace-group symbol. Within each part, leave a space
between each component. Rules for the notation for
Hermann-Mauguin and Hall symbols (if present) are given in the
symmetry CIF dictionary (cif_sym.dic) and, partially, in
_space_group_ssg_name_IT and _space_group_ssg_name_WJJ.
For composites described in a single data block, the superspace
group describes the symmetry of the whole structure. The
symmetry of each subsystem can be derived using the
appropriate W matrices.
Example:
Hall's notation W:-P -2xb -2ya:q q
data_space_group_ssg_name
    _name                        '_space_group_ssg_name'
    _category                    space_group
    _type                        char
    _example                     'Hall's notation W:-P -2xb -2ya:q q'
    _definition
;              Superspace-group symbol conforming to an alternative definition
               from that given in _space_group_ssg_name_IT and
               _space_group_ssg_name_WJJ for one-dimensional modulated
               structures or to the superspace-group name for higher dimensions.
               When necessary, indicate the origin and the setting. Use a colon
               ':' as a separator between the different parts of the
               superspace-group symbol. Within each part, leave a space
               between each component. Rules for the notation for
               Hermann-Mauguin and Hall symbols (if present) are given in the
               symmetry CIF dictionary (cif_sym.dic) and, partially, in
               _space_group_ssg_name_IT and _space_group_ssg_name_WJJ.
               For composites described in a single data block, the superspace
               group describes the symmetry of the whole structure. The
               symmetry of each subsystem can be derived using the
               appropriate W matrices.
;

_space_group_ssg_name_IT
CIF
Superspace-group symbol as given in International Tables for
Crystallography, Vol. C (2004). Valid only for one-dimensional
modulated structures. The symbol is divided into three parts:
the Hermann-Mauguin space-group symbol of the reference
structure, the modulation wave vector  and the phase shift
(or internal translation) associated with each component of
the space group. Each component of the space-group name is
separated by a space. Subscripts should appear without special
symbols and bars should be given as negative signs. The
components of the modulation wave vector (in parentheses) and
the phase shifts are also separated by a space. For composites
described in a single data block, the superspace group
describes the symmetry of the whole structure. The symmetry
of each subsystem can be derived using the appropriate W
matrices.
Ref: International Tables for Crystallography (2004). Vol. C,
     Chapter 9.8. Dordrecht: Kluwer Academic Publishers.
Example:
P n m a (0 0 ) 0 s 0
data_space_group_ssg_name_IT
    _name                        '_space_group_ssg_name_IT'
    _category                    space_group
    _type                        char
    _example                     'P n m a (0 0 \g) 0 s 0'
    _definition
;              Superspace-group symbol as given in International Tables for
               Crystallography, Vol. C (2004). Valid only for one-dimensional
               modulated structures. The symbol is divided into three parts:
               the Hermann-Mauguin space-group symbol of the reference
               structure, the modulation wave vector  and the phase shift
               (or internal translation) associated with each component of
               the space group. Each component of the space-group name is
               separated by a space. Subscripts should appear without special
               symbols and bars should be given as negative signs. The
               components of the modulation wave vector (in parentheses) and
               the phase shifts are also separated by a space. For composites
               described in a single data block, the superspace group
               describes the symmetry of the whole structure. The symmetry
               of each subsystem can be derived using the appropriate W
               matrices.

               Ref: International Tables for Crystallography (2004). Vol. C,
                    Chapter 9.8. Dordrecht: Kluwer Academic Publishers.
;

_space_group_ssg_name_WJJ
CIF
Superspace-group symbol as given by de Wolff, Janssen & Janner
(1981). Valid only for one-dimensional modulated structures.
The symbol is divided into three parts separated by colons ':':
the superspace lattice symbol, the Hermann-Mauguin space-group
symbol of the reference structure and the phase shift (or
internal translation) associated with each component of the
space group. Each component of the space-group name is separated
by a space. Subscripts should appear without special symbols and
bars should be given as negative signs. The phase shifts are
also separated by a space. For composites described in a single
data block, the superspace group describes the symmetry of the
whole structure. The symmetry of each subsystem can be derived
using the appropriate W matrices.
Ref: Wolff, P. M. de, Janssen, T. & Janner, A. (1981).
     Acta Cryst. A37, 625-636.
Example:
P:P c m n:s s -1
data_space_group_ssg_name_WJJ
    _name                        '_space_group_ssg_name_WJJ'
    _category                    space_group
    _type                        char
    _example                     'P:P c m n:s s -1'
    _definition
;              Superspace-group symbol as given by de Wolff, Janssen & Janner
               (1981). Valid only for one-dimensional modulated structures.
               The symbol is divided into three parts separated by colons ':':
               the superspace lattice symbol, the Hermann-Mauguin space-group
               symbol of the reference structure and the phase shift (or
               internal translation) associated with each component of the
               space group. Each component of the space-group name is separated
               by a space. Subscripts should appear without special symbols and
               bars should be given as negative signs. The phase shifts are
               also separated by a space. For composites described in a single
               data block, the superspace group describes the symmetry of the
               whole structure. The symmetry of each subsystem can be derived
               using the appropriate W matrices.

               Ref: Wolff, P. M. de, Janssen, T. & Janner, A. (1981).
                    Acta Cryst. A37, 625-636.
;

_space_group_ssg_WJJ_code
CIF
Superspace-group code as given by de Wolff, Janssen & Janner
(1981). Valid only for one-dimensional modulated structures.
Ref: Wolff, P. M. de, Janssen, T. & Janner, A. (1981).
     Acta Cryst. A37, 625-636.
Example:
28a.10.1/2
data_space_group_ssg_WJJ_code
    _name                        '_space_group_ssg_WJJ_code'
    _category                    space_group
    _type                        char
    _example                     '28a.10.1/2'
    _definition
;              Superspace-group code as given by de Wolff, Janssen & Janner
               (1981). Valid only for one-dimensional modulated structures.

               Ref: Wolff, P. M. de, Janssen, T. & Janner, A. (1981).
                    Acta Cryst. A37, 625-636.
;

#######################
## SPACE_GROUP_SYMOP ##
#######################

_SPACE_GROUP_SYMOP_[MS]
CIF
The SPACE_GROUP_SYMOP category introduced in the symmetry CIF
dictionary (cif_sym.dic) is intended to replace the original
core SYMMETRY_EQUIV category. It contains information about the
symmetry operations of the space group. For modulated structures,
superspace-group descriptions may be included in the same
category, but include the _ssg_ flag to indicate their
dimensionality of > 3.
Example:
loop_
        _space_group_symop_ssg_id
        _space_group_symop_ssg_operation_algebraic
                1                       x1,x2,x3,x4
                2                       1/2+x1,1/2-x2,1/2-x3,x4
                3                       1/2-x1,1/2+x2,-x3,1/2-x4
                4                       -x1,-x2,1/2+x3,1/2-x4
                5                       -x1,-x2,-x3,-x4
                6                       1/2-x1,1/2+x2,1/2+x3,-x4
                7                       1/2+x1,1/2-x2,x3,1/2+x4
                8                       x1,x2,1/2-x3,1/2+x4
data_space_group_symop_[ms]
    _name                        '_space_group_symop_[ms]'
    _category                    category_overview
    _type                        null
    loop_ _example
          _example_detail
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
;
    loop_
        _space_group_symop_ssg_id
        _space_group_symop_ssg_operation_algebraic
                1                       x1,x2,x3,x4
                2                       1/2+x1,1/2-x2,1/2-x3,x4
                3                       1/2-x1,1/2+x2,-x3,1/2-x4
                4                       -x1,-x2,1/2+x3,1/2-x4
                5                       -x1,-x2,-x3,-x4
                6                       1/2-x1,1/2+x2,1/2+x3,-x4
                7                       1/2+x1,1/2-x2,x3,1/2+x4
                8                       x1,x2,1/2-x3,1/2+x4
;
;
    Example 1 - example corresponding to the one-dimensional incommensurately
                modulated structure of K~2~SeO~4~.
;
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
      _definition
;              The SPACE_GROUP_SYMOP category introduced in the symmetry CIF
               dictionary (cif_sym.dic) is intended to replace the original
               core SYMMETRY_EQUIV category. It contains information about the
               symmetry operations of the space group. For modulated structures,
               superspace-group descriptions may be included in the same
               category, but include the _ssg_ flag to indicate their
               dimensionality of > 3.
;

_space_group_symop_ssg_id
CIF
A numeric code identifying each entry in the
_space_group_symop_ssg_operation_algebraic list.
data_space_group_symop_ssg_id
    _name                        '_space_group_symop_ssg_id'
    _category                    space_group_symop
    _type                        numb
#     _type_construct           [1-('_space_group_ssg_symops_number')]
    _list                        yes
    _definition
;              A numeric code identifying each entry in the
               _space_group_symop_ssg_operation_algebraic list.
;

_space_group_symop_ssg_operation_algebraic
CIF
A parsable string giving one of the symmetry operations of the
superspace group in algebraic form. These data will generally be
repeated in a loop. Use symbols as necessary according to
_cell_modulation_dimension.
All symmetry operations should be entered, including the
identity operation, those for lattice centring and that for
a centre of symmetry, if present. The symbolic notation for
coordinates is such that the identity operation is expressed
as x1,x2,x3,...,xn.
_space_group_symop_ssg_operation_algebraic must always be present
in a CIF corresponding to a modulated structure.
Example:
x1,-x2,x3,1/2+x4
data_space_group_symop_ssg_operation_algebraic
    _name                        '_space_group_symop_ssg_operation_algebraic'
    _category                    space_group_symop
    _type                        char
#     _type_construct
# ;                                ( *([1-9]/[1-9])?[-\+]?x[1-3])\
#                                  (,([1-9]/[1-9])?[-\+]?x[1-3]){2}\
#                                  (,([1-9]/[1-9])?[-\+]?\
#                                  x[4-('_cell_reciprocal_basis_vect_number')])\
#                                  {('_cell_modulation_dimension')}
# ;
    _list                        yes
    _list_reference              '_space_group_symop_ssg_id'
    _example                     'x1,-x2,x3,1/2+x4'
    _definition
;              A parsable string giving one of the symmetry operations of the
               superspace group in algebraic form. These data will generally be
               repeated in a loop. Use symbols as necessary according to
               _cell_modulation_dimension.
               All symmetry operations should be entered, including the
               identity operation, those for lattice centring and that for
               a centre of symmetry, if present. The symbolic notation for
               coordinates is such that the identity operation is expressed
               as x1,x2,x3,...,xn.

               _space_group_symop_ssg_operation_algebraic must always be present
               in a CIF corresponding to a modulated structure.
;

# -- end of file --- end of file --- end of file --- end of file ---

Revision history


1994-09-12  Initial definitions                             G. Madariaga
1994-09-19  Several corrections                             I.D. Brown
1994-09-19  Loops with mixed categories removed             G. Madariaga
1994-09-20  Addition of W for composites                    S. van Smaalen
1995-03-21  A new way of labelling parameters               G. Madariaga
1995-03-21  Extensive use of _type_construct                G. Madariaga
1995-04-05  Does _type_construct allow structured items?    G. Madariaga
1995-04-06  New entries                                     G. Madariaga
1995-04-10  Block identifiers added                         G. Madariaga
1997-05-26  _units_extension, _units_description and
_units_conversion substituted by _units and
_units_detail                                   G. Madariaga
1997-05-26  Units included in the definitions               G. Madariaga
1997-05-26  _symm_ substituted by _symmetry_                G. Madariaga
1997-05-26  category SYMMETRY_EQUIV added                   G. Madariaga
1997-05-27  explicit definition of _cell_matrix_W_          G. Madariaga
1997-05-27  _cell_matrix_W_organization removed             G. Madariaga
1997-05-27  _enumeration_range 1:8 added to
_cell_modulation_dimension                      G. Madariaga
1997-05-27  _enumeration_range 4:11 modified in
_cell_reciprocal_basis_vect_numb                G. Madariaga
1997-05-27  _diffrn_refln_indices
_diffrn_reflns_limit_indices
_diffrn_standard_refln_indices
_exptl_crystal_face_indices
_refln_indices and _reflns_limit_indices_
replaced by _diffrn_refln_extra_index_
_diffrn_reflns_limit_extra_index_
_diffrn_standard_refln_extra_index_
_exptl_crystal_face_extra_index_
_refln_extra_index_ and
_diffrn_reflns_limit_extra_index_               G. Madariaga

1997-05-28  _block_id substituted by _audit_block_code,
_audit_link_block_code and
_audit_link_block_description                   G. Madariaga
1997-05-28  added _refine_ls_by_class_R_Fsqd_factor and
_refine_ls_by_class_R_I_factor                  G. Madariaga
1997-05-28  added _refine_ls_by_class_d_res_                G. Madariaga
1997-05-29  deleted _refine_ls_Fourier_term and
_refine_ls_Fourier_term_code                    G. Madariaga
1997-06-03  deleted _atom_site_coeff_,
_atom_site_Fourier_label_,
_atom_site_Fourier_phase_                       G. Madariaga
1997-06-03  added the new datanames _atom_site_Fourier_
according to David's suggestions                G. Madariaga
1997-07-14  complete revision of _atom_site_Fourier_ items  G. Madariaga
1997-07-18  added the new datanames
_atom_site_spec_func_disp_label,
_atom_site_spec_func_occ_label,
_atom_site_spec_func_temp_label                 G. Madariaga
1997-07-18  *_special_func_ -> *_spec_func_
*_special_par_ -> *_spec_param_
*_special_param_ -> *_spec_param_               G. Madariaga
1997-07-18  deleted *_special_npar_                         G. Madariaga
1997-07-18  _atom_site_spec_label_ substituted by
_atom_site_spec_param_
added the following parent/child relationships
_refine_ls_spec_param_disp_code and
_atom_site_spec_param_disp_code,
_refine_ls_spec_param_occ_code and
_atom_site_spec_param_occ_code,
_refine_ls_spec_param_temp_code and
_atom_site_spec_param_temp_code                 G. Madariaga
1997-07-18  redefined _atom_site_phason_label,
added _atom_site_phason_formula                 G. Madariaga
1997-07-21  added _refine_ls_spec_param_rot_ and
_atom_site_spec_param_rot_, together with the
corresponding parent/child links.               G. Madariaga
1997-07-21  added _audit_link_external_block_ items         G. Madariaga
1997-07-21  added _reflns_shell_by_class_ items             G. Madariaga
1997-07-22  added _atom_site_spec_func_disp_axis and
_atom_site_spec_func_rot_axis                   G. Madariaga
1997-07-22  added new *_wave_vector *_wave_vector_seq_id
and *_wave_vector_ items                        G. Madariaga
1997-07-22  added *_temp_element_ items                     G. Madariaga
1997-07-23  *_sup_spac_sy_ items reworded as
*_superspace_symm_.
_refine_ls_mod_funct_description reworded as
_refine_ls_modulation_function.                 G. Madariaga
1997-07-23  *_wave_vector_ items changed:
defined generic _atom_site_Fourier_wave_vector_
and new link/parent relationships with
*_disp_wave_vector_seq_id,
*_occ_wave_vector_seq_id,
*_rot_wave_vector_seq_id,
*_temp_wave_vector_seq_id.                      G. Madariaga
1997-07-24  added _atom_site_spec_param_temp_B and
_atom_site_spec_param_temp_U                    G. Madariaga
1997-07-24  ********Cyclops test passed***********          G. Madariaga
1997-07-28  _refine_ls_subsystem_ items renamed to
_cell_subsystem_. _cell_numb_of_subsystems
renamed to _cell_subsystem_number               G. Madariaga
1997-07-29  _cell_reciprocal_basis_vect_numb renamed to
_cell_reciprocal_basis_vect_number.
_diffrn_reflns_number_of_classes renamed to
_diffrn_reflns_class_number                     G. Madariaga
1997-11-12  References to the B form of temperature
factors removed                                 I.D. Brown
1997-11-12  Some spelling mistakes corrected.               I.D. Brown
1997-12-12  _atom_site_Fourier_disp_sin removed from
_list_reference of _atom_site_Fourier_disp_cos.
_atom_site_Fourier_disp_phase removed from
_list_reference of _atom_site_Fourier_disp_modulus.
_atom_site_Fourier_disp_modulus removed from
_list_reference of _atom_site_Fourier_disp_phase.
_atom_site_Fourier_disp_cos removed from
_list_reference of _atom_site_Fourier_disp_sin.
_atom_site_Fourier_occ_sin removed from
_list_reference of _atom_site_Fourier_occ_cos.
_atom_site_Fourier_occ_phase removed from
_list_reference of _atom_site_Fourier_occ_modulus.
_atom_site_Fourier_occ_modulus removed from
_list_reference of _atom_site_Fourier_occ_phase.
_atom_site_Fourier_occ_cos removed from
_list_reference of _atom_site_Fourier_occ_sin.
_atom_site_Fourier_rot_sin removed from
_list_reference of _atom_site_Fourier_rot_cos.
_atom_site_Fourier_rot_phase removed from
_list_reference of _atom_site_Fourier_rot_modulus.
_atom_site_Fourier_rot_modulus removed from
_list_reference of _atom_site_Fourier_rot_phase.
_atom_site_Fourier_rot_cos removed from
_list_reference of _atom_site_Fourier_rot_sin.
_atom_site_Fourier_temp_sin_U_ removed from
_list_reference of _atom_site_Fourier_cos_U_.
_atom_site_Fourier_temp_phase_U_ removed from
_list_reference of _atom_site_Fourier_modulus_U_.
_atom_site_Fourier_temp_modulus_U_ removed from
_list_reference of _atom_site_Fourier_phase_U_.
_atom_site_Fourier_temp_cos_U_ removed from
_list_reference of _atom_site_Fourier_sin_U_.   B. McMahon
P. Edgington
1997-12-12  Several typos corrected                         P. Edgington
1997-12-12  Tabs removed                                    P. Edgington
1997-12-15  _enumeration_range    0.0: added to the
following items:
_atom_site_Fourier_disp_modulus
_atom_site_Fourier_occ_modulus
_atom_site_Fourier_rot_modulus
_atom_site_Fourier_temp_modulus_U_
_atom_site_phason_coeff
_cell_wave_vector_pressure_
_cell_wave_vector_temp_
_refine_ls_overall_phason_coeff.
_enumeration_range    0: added to the following
items:
_diffrn_reflns_by_class_number
_reflns_shell_by_class_number_measured_all
_reflns_shell_by_class_number_measured_obs
_enumeration_range   1:192 added to
_symmetry_equiv_position_number
_enumeration_range  1.1: added to
_symmetry_superspace_group_numb_IT              P. Edgington
1997-12-15  'obs' and 'observed' changed to 'gt'. References
to '_reflns_observed_criterion' changed to
'_reflns_threshold_expression'                  B. McMahon
1997-12-15  Items including *_superspace_symm_, _superspace_
and _symmetry_, renamed to _ssg_symmetry_ or
_symmetry_ssg_ (where appropriate). 'ssg' holds
for 'superspace group'                          I.D. Brown
G. Madariaga
B. McMahon
1997-12-15  _symmetry_ssg_numb_WJJ renamed to
_symmetry_ssg_code_WJJ                          G. Madariaga
1997-12-16  _atom_site_mod_refinement_flags split into
_atom_site_disp_refinement_flag,
_atom_site_occ_refinement_flag,
_atom_site_temp_refinement_flag                 I.D. Brown
P. Edgington
1997-12-17  The following items:
_atom_site_spec_param_disp_code,
_atom_site_spec_param_occ_code,
_atom_site_spec_param_rot_code,
_atom_site_spec_param_temp_code,
_atom_site_spec_param_disp,
_atom_site_spec_param_occ,
_atom_site_spec_param_rot,
_atom_site_spec_param_temp_U,
_cell_matrix_W_
renamed as:
_atom_site_spec_func_disp_param_code,
_atom_site_spec_func_occ_param_code,
_atom_site_spec_func_rot_param_code,
_atom_site_spec_func_temp_param_code,
_atom_site_spec_func_disp_param,
_atom_site_spec_func_occ_param,
_atom_site_spec_func_rot_param,
_atom_site_spec_func_temp_param_U,
_cell_subsystem_matrix_W_
for a better introduction of new categories     G. Madariaga
1997-12-18  new categories defined:
ATOM_SITE_FOURIER_DISP, ATOM_SITE_FOURIER_OCC,
ATOM_SITE_FOURIER_ROT, ATOM_SITE_FOURIER_TEMP,
ATOM_SITE_FOURIER-WAVE_VECTOR,
ATOM_SITE_SPEC_FUNC_DISP,
ATOM_SITE_SPEC_FUNC_OCC, ATOM_SITE_SPEC_FUNC_ROT,
ATOM_SITE_SPEC_FUNC_TEMP, CELL_SUBSYSTEM,
CELL_WAVE_VECTOR, DIFFRN_REFLNS_CLASS,
REFINE_LS_CLASS, REFINE_LS_SPEC_FUNC_DISP,
REFINE_LS_SPEC_FUNC_OCC, REFINE_LS_SPEC_FUNC_ROT,
REFINE_LS_SPEC_FUNC_TEMP, REFINE_LS_SPEC_PARAM_DISP,
REFINE_LS_SPEC_PARAM_OCC, REFINE_LS_SPEC_PARAM_ROT,
REFINE_LS_SPEC_PARAM_TEMP, REFLNS_CLASS,
REFINE_SHELL_CLASS, SYMMETRY_SSG_EQUIV          B. McMahon
1997-12-18  added the appropriate items belonging to
CATEGORY_OVERVIEW and some examples. Dictionary
arranged a la Core.                             G. Madariaga
1997-12-18  ********vcif test passed***********             G. Madariaga
1998-01-08  *_U_ items converted to *_U (redundancy)        G. Madariaga
1998-05-20  Major changes:
The abbreviation 'temp' for 'temperature factor'
has been substituted by 'U'. It affects the
following categories and datanames:
ATOM_SITE_FOURIER_TEMP
_atom_site_Fourier_temp_label
_atom_site_Fourier_temp_element_U
_atom_site_Fourier_temp_cos_U
_atom_site_Fourier_temp_modulus_U
_atom_site_Fourier_temp_phase_U
_atom_site_Fourier_temp_sin_U
_atom_site_Fourier_temp_wave_vector_seq_id
ATOM_SITE_SPEC_FUNC_TEMP
_atom_site_spec_func_temp_element_U
_atom_site_spec_func_temp_label
_atom_site_spec_func_temp_param_code
_atom_site_spec_func_temp_param_U
REFINE_LS_SPEC_FUNC_TEMP
_refine_ls_spec_func_temp
_refine_ls_spec_func_temp_code
REFINE_LS_SPEC_PARAM_TEMP
_refine_ls_spec_param_temp
_refine_ls_spec_param_temp_code

_diffrn_reflns_by_class_number renamed to
_diffrn_reflns_class_number_of_reflns

_reflns_by_class_number_ renamed to
_reflns_class_number_of_reflns_

The part '_by_class' has been substituted by
'class' for a better link to the category
name. Affected datanames are:
_diffrn_reflns_by_class_av_R_eq
_diffrn_reflns_by_class_av_sgI/I
_diffrn_reflns_by_class_number
_diffrn_reflns_by_class_th_
_refine_ls_by_class_res_
_refine_ls_by_class_R_factor_
_refine_ls_by_class_R_Fsqd_factor
_refine_ls_by_class_R_I_factor
_refine_ls_by_class_wR_factor_
_reflns_by_class_number_
_reflns_shell_by_class_d_res_
_reflns_shell_by_class_meanI_over_sigI_
_reflns_shell_by_class_number_measured_
_reflns_shell_by_class_number_possible
_reflns_shell_by_class_number_unique_
_reflns_shell_by_class_percent_possible_
_reflns_shell_by_class_Rmerge_

*_extra_index_ renamed to *_index_m_.
list of affected datanames:
_diffrn_refln_extra_index_
_diffrn_reflns_limit_extra_index_
_diffrn_standard_refln_extra_index_
_exptl_crystal_face_extra_index_
_refln_extra_index_
_reflns_limit_extra_index_

_diffrn_reflns_class renamed to
_diffrn_reflns_class_description.

_diffrn_reflns_class_number renamed to
_diffrn_reflns_number_of_classes.

_diffrn_reflns_sat_maximum_order renamed to
_diffrn_reflns_satellite_order_max.

_diffrn_symmetry renamed to
_diffrn_symmetry_description

_refine_ls_class_wR_factor_gt removed.

_symmetry_ssg_equiv_position_number renamed to
_symmetry_ssg_equiv_positions_number.           I.D. Brown
1998-05-20  Less major and minor changes:
Several examples looped correctly. Some typos
corrected.                                      I.D. Brown
1998-05-21  _enumeration_range of _atom_site_rot_modulus
changed from 0.0:360.0 to 0.0:
Added _enumeration_default 0 to
_cell_subsystem_matrix_W_                       I.D. Brown
1998-05-21  More major changes:
_disp substituted by _displace since the latter
abbreviation already exists in coreCIF. However
some datanames (like
_atom_site_Fourier_displace_wave_vector_seq_id)
are probably too long. Let's try anyway.

_atom_site_Fourier_displace_,
_atom_site_Fourier_occ_,
_atom_site_Fourier_rot_ and
_atom_site_Fourier_U_ items renamed to:
_atom_site_displace_Fourier_,
_atom_site_occ_Fourier_,
_atom_site_rot_Fourier_ and
_atom_site_U_Fourier_. The corresponding
categories have been similarly changed          I.D. Brown
1998-05-21  _atom_site_Fourier_wave_vector_seq_id
included as _list_reference of
_atom_site_Fourier_wave_vector_                 G. Madariaga
1998-05-21  *_spec_func_ -> *_special_func_                 I.D. Brown
1998-05-22  *_spec_param_ -> *_special_param_               I.D. Brown
1998-05-22  _atom_site_special_func_displace_,
_atom_site_special_func_occ_,
_atom_site_special_func_rot_ and
_atom_site_special_func_U_ items renamed to:
_atom_site_displace_special_func_,
_atom_site_occ_special_func_,
_atom_site_rot_special_func_ and
_atom_site_U_special_func_.
_refine_ls_special_func_displace_,
_refine_ls_special_func_occ_,
_refine_ls_special_func_rot_ and
_refine_ls_special_func_U_ items renamed to:
_refine_ls_displace_special_func_,
_refine_ls_occ_special_func_,
_refine_ls_rot_special_func_ and
_refine_ls_U_special_func_.
_refine_ls_special_param_displace_,
_refine_ls_special_param_occ_,
_refine_ls_special_param_rot_ and
_refine_ls_special_param_U_ items renamed to:
_refine_ls_displace_special_param_,
_refine_ls_occ_special_param_,
_refine_ls_rot_special_param_ and
_refine_ls_U_special_param_. The corresponding
categories have been similarly changed          G. Madariaga
1998-05-22  *_Fourier_label -> *_Fourier_atom_site_label
*_special_func_label ->
*_special_func_atom_site_label
'element' referred to the temperature factor U
changed to 'tens_elem'                          I.D. Brown
1998-05-25  *_refinement_flag -> *_modulation_flag          I.D. Brown
1998-05-25  _refine_ls_*_special_param_ items renamed to
_refine_ls_*_special_func_param_                G. Madariaga
1998-05-26  _refine_ls_restrained_wR_gt deleted             G. Madariaga
1998-05-27  _diffrn_reflns_th_ renamed to
_diffrn_reflns_class_d_res_                     I.D. Brown
1998-05-27  _symmetry_ssg_equiv_pos_as_fract_coord renamed
to _symmetry_ssg_equiv_pos_as_xyz               I.D. Brown
1998-08-03  Fixed some typos; removed global_ block         B. McMahon
1998-08-04  Moved _diffrn_pressure_history and _diffrn_thermal_history
to core as _exptl_crystal_pressure_history and
_exptl_crystal_thermal_history; moved
_diffrn_symmetry_description and REFINE_LS_CLASS to core
B. McMahon
1998-12-08  Version spellchecked and checked with vcif and cyclops, then
returned to Gotzon                              B. McMahon
1998-12-23  Categories involving special functions cross-
referenced. Some examples enlarged.             I.D. Brown
1998-12-23  Some items and categories alphabetically
reordered.                                      G. Madariaga
1998-12-23  _atom_site_phason_label renamed to
_atom_site_phason_atom_site_label               G. Madariaga
1998-12-23  _diffrn_reflns_number_of_classes removed.       G. Madariaga
1998-12-23  Merging of the following pairs of definitions:
_reflns_shell_class_d_res_high and
_reflns_shell_class_d_res_low

_reflns_shell_class_meanI_over_sigI_all and
_reflns_shell_class_meanI-over_sigI_gt

_reflns_shell_class_number_measured_all and
_reflns_shell_class_number_measured_gt

_reflns_shell_class_number_unique_all and
_reflns_shell_class_number_unique_gt

_reflns_shell_class_percent_possible_all and
_reflns_shell_class_percent_possible_gt

_reflns_shell_class_Rmerge_F_all and
_reflns_shell_class_Rmerge_F_gt

_reflns_shell_class_Rmerge_I_all and
_reflns_shell_class_Rmerge_I_gt.                H. Flack
1998-12-27  Modified the definitions of:
_atom_site_Fourier_wave_vector_,
_cell_wave_vector_,
_cell_subsystem_matrix_W_,
_symmetry_ssg_name,
_symmetry_ssg_name_IT and
_symmetry_ssg_name_WJJ                          G. Madariaga
1999-01-14  Added the following datanames:
_atom_site_phason_subsystem_code
_atom_site_aniso_subsystem_code
_atom_site_displace_Fourier_subsystem_code
_atom_site_occ_Fourier_subsystem_code
_atom_site_rot_Fourier_subsystem_code
_atom_site_U_Fourier_subsystem_code
_atom_site_displace_special_func_subsystem_code
_atom_site_occ_special_func_subsystem_code
_atom_site_rot_special_func_subsystem_code
_atom_site_U_special_func_subsystem_code
_geom_angle_atom_site_subsystem_code_
_geom_bond_atom_site_subsystem_code_
_geom_contact_atom_site_subsystem_code_
_geom_torsion_atom_site_subsystem_code_         V. Petricek
1999-01-24  More examples added to
ATOM_SITE_DISPLACE_FOURIER                      G. Madariaga
1999-02-28  _enumeration list of:
_atom_site_displace_Fourier_axis,
_atom_site_rot_Fourier_axis,
_atom_site_displace_special_func_axis and
_atom_site_rot_special_func_axis
enlarged to cover arbitrary axes different from
the crystallographic ones.                      G. Madariaga
1999-02-28  New datanames:
_atom_site_displace_Fourier_axes_description,
_atom_site_rot_Fourier_axes_description,
_atom_site_displace_special_func_axes_description
and _atom_site_rot_special_func_axes_description.
G. Madariaga
1999-02-28  Modified the definitions of:
_atom_site_displace_Fourier_cos,
_atom_site_displace_Fourier_modulus and
_atom_site_displace_Fourier_sin                 G. Madariaga
1999-02-28  A new example added to ATOM_SITE_ROT_FOURIER
and ATOM_SITE_DISPLACE_FOURIER                      G. Madariaga
1999-04-01  Some cosmetic rearrangement of line endings to
improve the formatted version                   B. McMahon
1999-04-19  DIFFRN_REFLNS_CLASS and REFLNS_CLASS removed
(already in cif_core.dic 2.1)
_atom_site_Fourier_wave_vector renamed to
_atom_site_Fourier_wave_vector_description
_cell_reciprocal_basis renamed to
_cell_reciprocal_basis_description
_cell_subsystem renamed to
_cell_subsystem_description
_refine_ls_hydrogen_mod_param renamed to
_refine_ls_hydrogen_mod_flag
_refine_ls_*_special_func renamed to
_refine_ls_*_special_func_description.          I.D. Brown
1999-04-19  _symmetry_equiv_position_number:
_enumeration_range 1:192 changed to
_enumeration_range 1:                           I.D. Brown
1999-04-19  _refine_ls_*_special_func_param renamed to
_refine_ls_*_special_func_param_description.    G. Madariaga
1999-07-26  New datanames:
_atom_site_modulation_global_phase_t_           G. Madariaga
1999-07-29  A caution about the names of the items belonging
to SYMMETRY and SYMMETRY_SSG_EQUIV categories   I.D. Brown
1999-07-29  Definition of _atom_site_Fourier_wave_vector_
reworded                                        G. Madariaga
1999-07-29  Definition of _cell_subsystem_matrix_W_
completely reworded                             G. Madariaga
1999-07-29  ********vcif test passed***********             G. Madariaga
2000-04-20  merged Gotzon's revisions/my cosmetic changes   B. McMahon
2000-07-06  _aver -> _av in several _geom definitions
_type_construct entries commented out pending
some software implementation of
_type_construct validation
new categories added in several cases to house
data items that give collective descriptions of
other items individually looped together; new
categories are ATOM_SITES_DISPLACE_FOURIER,
ATOM_SITES_DISPLACE_SPECIAL_FUNC,
ATOM_SITES_ROT_FOURIER, ATOM_SITES_ROT_SPECIAL_FUNC,
CELL_WAVE_VECTORS
several stylistic and punctuation changes       B. McMahon
2000-07-19  Some further changes during COMCIFS review:
removed _audit_link_external_block_code and
*_description pending reworking of core
AUDIT_LINK category to include external
blocks. Description of the recommended usage
for block codes in modulated structures moved
to the discussion in data_audit_link_[ms].
[ms] added consistently to category descriptions
specific to this dictionary
REFLNS_SHELL_CLASS category removed because
this functionality is met in the Core by
REFLNS_CLASS
moved _refine_ls_F_calc_accuracy, *_details,
*_formula, _refine_ls_restrained_wR_all,
*_weighting_scheme to core
_refine_ls_hydrogen_mod_flag,
_refine_ls_modulation_func_description,
_refine_ls_overall_phason_coeff,
_refine_ls_overall_phason_formula renamed as
_refine_ls_mod_hydrogen_treatment,
_refine_ls_mod_func_description,
_refine_ls_mod_overall_phason_coeff,
_refine_ls_mod_overall_phason_formula,
respectively
First attempt to rename symmetry data names in
with the symcif proposals by changing
_symmetry_ to _space_group_ throughout. The
thinking is that the _ssg_ flag will indicate
superspace group within the existing (draft)
SPACE_GROUP category. I.D.Brown suggests that
there is no need for a special category for
equivalent positions; but I'm not sure at this
stage, and retain Gotzon's proposal until
further consideration is given to how to phase
out the old core _symmetry_ names
_symmetry_ssg_equiv_pos_as_xyz renamed
_space_group_ssg_equiv_pos_algebraic for
greater generality
Added example to _space_group_ssg_code_WJJ      B. McMahon
2000-10-16  Some additional changes:
-symmetry items. Changes consistent with
cif_sym.0.07:
_space_group_ssg_numb_IT changed to
_space_group_ssg_IT_number.
SPACE_GROUP_SSG_EQUIV category changed to
SPACE_GROUP_SYMOP.
_space_group_ssg_equiv_pos_algebraic,
_space_group_ssg_equiv_pos_seg_id changed to
_space_group_symop_ssg_operation_algebraic,
_space_group_symop_ssg_id.
_space_group_equivalent_position_number changed to
_space_group_symop_ssg_operations_number and
therefore changed from SPACE_GROUP to
SPACE_GROUP_SYMOP

'equivalent position' replaced by 'symmetry
operation' where neccessary (see _geom_*_site_symmetry_
items).

-New category ATOM_SITES_MODULATION. It contains
only the _atom_sites_modulation_global_phase_t_
items.

-Some minors changes.
Reference to JANA98 changed to JANA2000.
Some references corrected.                     G. Madariaga
2001-04-19  Treatment of special functions completely
changed.
The categories:
ATOM_SITE_ROT_SPECIAL_FUNC
ATOM_SITE_U_SPECIAL_FUNC
ATOM_SITES_DISPLACE_SPECIAL_FUNC
ATOM_SITES_ROT_SPECIAL_FUNC
REFINE_LS_DISPLACE_SPECIAL_FUNC
REFINE_LS_DISPLACE_SPECIAL_FUNC_PARAM
REFINE_LS_OCC_SPECIAL_FUNC
REFINE_LS_OCC_SPECIAL_FUNC_PARAM
REFINE_LS_ROT_SPECIAL_FUNC
REFINE_LS_ROT_SPECIAL_FUNC_PARAM
REFINE_LS_U_SPECIAL_FUNC
REFINE_LS_U_SPECIAL_FUNC_PARAM
have been removed.
The categories ATOM_SITE_DISPLACE_SPECIAL_FUNC
and ATOM_SITE_OCC_SPECIAL_FUNC have suffered
the following changes:
_atom_site_displace_special_func_axis,
_atom_site_displace_special_func_param,
_atom_site_displace_special_func_param_code,
_atom_site_displace_occ_func_param,
_atom_site_displace_occ_func_param_code
have been removed and substituted by:
_atom_site_displace_special_func_sawtooth_,
_atom_site_occ_special_func_crenel_.
All the examples have been accordingly changed.
The categories:
ATOM_SITE_DISPLACE_FOURIER,
ATOM_SITE_OCC_FOURIER,
ATOM_SITE_ROT_FOURIER,
ATOM_SITE_U_FOURIER
have been split. There are four new categories:
ATOM_SITE_DISPLACE_FOURIER_PARAM,
ATOM_SITE_OCC_FOURIER_PARAM,
ATOM_SITE_ROT_FOURIER_PARAM,
ATOM_SITE_U_FOURIER_PARAM
linked with the former ones through two new items:
_atom_site_displace_Fourier_id,
_atom_site_displace_Fourier_param_id
which are the _list_reference for the all the items
in each category. The examples have been changed
and some definitions slightly reworded.

Added the new category ATOM_SITE_PHASON.

Some cosmetic changes.                          I.D. Brown
J.Westbrook
2001-05-12  *_subsystem_code items deleted except for
_atom_site_subsystem_code; corrected _list_reference
for _atom_site_Fourier_wave_vector_description and
_list_link_parent for _atom_site_U_Fourier_param_id;
moved _space_group_symop_ssg_operations_number to category
space_group as _space_group_ssg_symops_number (all
suggestions of IDB)                             B. McMahon
2001-05-28  _space_group_ssg_symops_number and
_cell_reciprocal_basis_vect_number now appear as
comments. They are only useful for some
_type_construct regex.
_cell_reciprocal_basis_vect_number has been
substituted by (_cell_modulation_dimension + 3)
in some definitions.                             G. Madariaga
2002-02-28  Definitions of:
_space_group_[ms], _space_group_ssg_name,
_space_group_ssg_name_IT,
_space_group_ssg_name_WJJ and
_space_group_symop_[ms]
reworded according to the rules given in the
dictionary cif_sym 1.0.                          G. Madariaga
2002-02-04  Release version 1.0. IUCr                        (B. McMahon)
2002-03-04  Cosmetic edits for formatted version             B. McMahon
2004-06-10  Further cosmetic edits for formatting in
International Tables Volume G                    B. McMahon
2005-01-06  Some realphabetisation                           B. McMahon
2005-01-17  NJ Ashcroft: minor corrections to hyphenation, spelling and
punctuation
_audit_link_[ms]: definition edited slightly
_cell_wave_vectors_pressure_, _cell_wave_vectors_temp_:
definition edited slightly
_exptl_crystal_type_of_structure: definition edited
_space_group_ssg_IT_number, data_space_group_ssg_name_IT:
reference to Vol. C updated
_geom_torsion_: reference changed from Endeavour to Experientia
2005-03-27   Addition of changes included in ITCG chapter 4.3 G. Madariaga
2005-06-16   Category overviews added for all categories    NJ Ashcroft